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Abstract

This paper demonstrates that the interactions of firm-level indivisible invest-

ments give rise to aggregate fluctuations without aggregate exogenous shocks.

I develop a method to derive the distribution of the aggregate capital growth

rate by embedding a fictitious tatonnement in a branching process. This

method shows that idiosyncratic shocks may lead to non-vanishing aggre-

gate fluctuations when the number of firms tends to infinity. By incorporat-

ing this mechanism in a dynamic general equilibrium model with indivisible

investment and sticky price, I provide the real business cycle theory with a

driver of fluctuations: aggregate investment demand shocks that arise from

idiosyncratic productivity shocks. Due to predetermined prices of goods,

firms respond to investment shocks by adjusting labor and output, thereby

causing the comovements of output and consumption with investment. Nu-

merical simulations show that the model generates aggregate fluctuations

comparable to the business cycles in magnitude and correlation structure

under standard calibration.

Keywords: Business cycle, strategic complementarity, idiosyncratic shock,

law of large numbers, criticality, fat tail.
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1 Introduction

One of the most significant questions in macroeconomics is what drives the

short-run fluctuations of output in normal times. On the one hand, pursu-

ing this question, researchers have investigated a number of shocks in such

fundamental parameters as technology, preference, monetary policy, and ex-

pectations. While these aggregate exogenous shocks have been incorporated

in the business cycles models and researchers have proven their empirical

relevance, there remains a gap between the observed shocks and model in-

terpretation. On the other hand, traditional Keynesians and practitioners in

business and policy have stressed the role of autonomous shifts in aggregate

investment demand. Nevertheless, the modern business cycles literature has

stayed away from the investment demand shocks, since investment demand is

an endogenous variable. This paper seeks to augment the literature by bring-

ing these two lines of thought together. It gives a theoretical foundation to

the use of investment demand shocks in the standard business cycles model

by introducing interactions of firm-level non-linear investment decisions.

This paper shows that the interactions of indivisible investments can gen-

erate aggregate demand shocks. An indivisible investment is the simplest ex-

ample of non-linearity observed in the real economy. When such non-linear

behaviors are coupled with each other, the system can generate aggregate

fluctuations. However, it is important to note that it only occurs in certain

restricted environments. For example, if a pair-wise correlation of non-linear

oscillations is too weak, the law of large numbers takes effect and suppresses

fluctuations in aggregation. The right amount of correlation is necessary to

generate aggregate fluctuations.
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To illustrate this point, let us consider a simple reduced model. Suppose

that there are N firms, each of which potentially conducts a binary invest-

ment. All firms are connected with each other and a firm’s investment causes

the investment of each one of the other firms with probability φ/N . In this

case, the mean number of firms induced to invest by a triggering investment

is φ. If a triggering firm induces another firm to invest, the second invest-

ment induces another investment in turn. The mean and variance of the total

number of firms induced to invest by this process are finite if φ < 1 when N

tends to infinity. Thus, the variance of the ratio of investing firms to N scales

as 1/N2 and quickly becomes negligible. If φ > 1, the chain-reaction process

is explosive, and thus, there is a non-negligible chance of all firms investing

simultaneously, which does not agree with the observations of business cycles

in normal times.

An interesting phenomenon emerges when φ = 1. At this value, the

above process stops in a finite step with probability one even in the infinite

limit of N , whereas the mean and variance of the total number of investing

firms diverge. When the number of initial triggering firms follows a binomial

distribution with probability φ and population N , it turns out that the ratio

of investing firms to N has a non-zero asymptotic variance. This provides a

foundation for aggregate investment demand shocks. At the critical value of

connectedness φ, micro investment decisions have macro consequences. Then,

the central question is why φ has to have the particular critical value 1 in

the real economy. This occurs when the investment threshold for each firm

is proportional to aggregate capital. This paper presents a dynamic general

equilibrium model in which such a proportional rule emerges naturally.
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I consider monopolistic firms competing by producing differentiated goods

that are consumed by households with homothetic preference. This economy

features aggregate demand externality as in Blanchard and Kiyotaki (1987),

with which an increase in aggregate demand proportionally shifts the de-

mand schedule for each good. Under constant returns to scale technology,

capital level would be indeterminate in the production sector if capital is

adjusted continuously. Now suppose that a capital adjustment is a discrete

decision. By incorporating indivisible investments, I obtain two results that

do not arise in the case of continuous investments: the capital level given

factor prices is locally unique, and the distribution of aggregate investment

fluctuations is analytically derived.

Idiosyncratic shocks give rise to aggregate risks under these three condi-

tions. First, the investment decision is non-linear. If the investment response

to aggregate capital is smooth and locally linear, then the idiosyncrasies of

micro-level investments cancel out with each other as the law of large numbers

predicts. Second, the investment decisions complement each other. That is

to say, even though the demand for toothbrush is discrete, it does not gen-

erate aggregate fluctuations as long as the household toothbrush demands

are independent of each other. Third, the complementarity is large. It must

be large enough for a firm’s investment to induce, on average, one other in-

vestment. This implies that the complementarity leads to indeterminacy if

the investments are continuous rather than discrete. Considering these re-

strictive conditions helps us to identify possible loci where interactions pose

aggregate risks. There are a few such aggregate phenomena in an economy:

one notable example is Keynes’ beauty contest of security traders; another
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is the pricing of a good given an aggregate price level. This paper proposes

firm-level investment decisions as another phenomenon that meets these con-

ditions.

This paper delivers three results. First, I numerically show that the dy-

namic general equilibrium with indivisible capital, sticky price setting, and

many but a finite number of firms generates aggregate fluctuations compa-

rable to the business cycles in their magnitude and correlation structure.

Second, an asymptotic distribution function of the aggregate capital fluctu-

ation is derived when the number of firms tends to infinity. The distribution

has a heavier tail than the normal distribution.1 The fat tail indicates that

the size of aggregate investment is sensitive to the detailed configuration of

firms’ positions in the inaction band. This sensitivity to the detailed config-

uration causes the aggregate investment to exhibit fluctuations in the course

of the evolution of capital profile driven by depreciation and discrete invest-

ments. Third, I show that the variance of aggregate fluctuations does not

vanish at the infinite limit of the number of firms. Even though an economy

consists of an infinite number of firms, the non-linear behavior at the firm

level does not cancel out in aggregation. This result contrasts to the sectoral

models that lack a strong amplification mechanism of idiosyncratic shocks

due to the law of large numbers.

1Nirei (2006) derived a similar distribution. The present paper differs from the previous

one as follows. First, this paper shows the non-zero asymptotic variance of the aggregate

growth rate, which was lacking in the previous paper. Second, this paper is worked out in

a standard real business cycles framework. Third, this paper eliminates the assumption

in the previous paper that the variance of idiosyncratic shocks depends on the number of

firms.
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I employ a fictitious tatonnement process to derive the distribution of ag-

gregate fluctuation. An investment by a firm increases the aggregate capital

and output in the next period. Because of the aggregate demand external-

ity, the higher output induces the other firms to produce more in the next

period and thus to invest more in this period. Then, there is a chance of

a chain reaction of investments in which one firm’s investment triggers an-

other. I formalize this chain reaction as a fictitious best-response dynamics

that converges to an equilibrium. The size of the chain reaction depends on

the configuration of firms’ positions in the inaction band. With a one-sided

(S,s) policy, a firm’s position in the inaction band asymptotically follows a

uniform distribution. Thus, I derive the unconditional distribution of aggre-

gate investment size by drawing a profile of firms’ positions from a jointly

uniform distribution with its dimension being equal to the number of firms.

Several studies have pointed out the synchronized timing of firms’ dis-

crete actions as an important source of macroeconomic fluctuations. Shleifer

(1986) demonstrated that the event of synchronized actions can recur deter-

ministically and endogenously through self-fulfilling expectations of periodic

adjustments. Jovanovic (1987) posed the question as to when idiosyncratic

shocks give rise to aggregate risks. Durlauf (1993) showed that the aggre-

gate size of synchronized actions depends on the detailed configuration of

agents’ states and can exhibit a long-run path-dependence. I extend this lit-

erature by presenting a sharper characterization of the synchronization in a

standard business cycle model. I obtain an analytical expression of the fluc-

tuation magnitude with parameters that can be estimated from firm-level

data.
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Scholars working on interaction-based models and those working on (S,s)

economies, independently from each other, have tackled the question of how

to analyze the aggregate fluctuations that arise from micro-level discrete-

ness, or more generally, micro-level non-linearity. The models of interactions

and non-linear dynamics have shed light on the possibility of endogenous

fluctuations arising from micro-level non-linearity, as in Glaeser, Sacerdote,

and Scheinkman (1996), Brock and Hommes (1997), and Brock and Durlauf

(2001). The (S,s) literature, in contrast, concentrates on macroeconomy

where pricing or investment incurs fixed costs and thus exhibits non-linearity

at the micro level. Typically, an aggregate (S,s) model features a continuum

of firms as in Thomas (2002). This modeling choice precludes the possibility

in which interactions of “granular” firms give rise to aggregate fluctuations

as in the interaction-based models. While I draw on the (S,s) literature in

some important respects, the fluctuation results of this paper are obtained

in the model with many but a finite number of firms, and the intuition of

the results is analogous to that of the interaction-based models.

This paper contributes to the ongoing debate on the origins of business cy-

cle fluctuations. Researchers such as Fisher (2006) and Justiniano, Primiceri,

and Tambalotti (2010) have shown the importance of investment-specific

technology shocks in accounting for business cycles in dynamic general equi-

librium models. This paper provides a microfoundation for the autonomous

fluctuations of aggregate investments. This paper shares its motivation with

the literature on sunspot equilibrium, such as Gaĺı (1994) and Wang and Wen

(2008), but it differs in that the agents’ expectation system is dynamically

determinate. In this model, the agents’ expectation system is a continuum
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approximation of the equilibrium dynamics which is a system of non-linear

dynamics of a finite number of firms. Unlike sunspot models, the equilib-

rium outcome is locally unique due to the discreteness of micro-level deci-

sions. The mechanism for scale-free fluctuations in this model is related to

the “break of the law of large numbers” argument in Gabaix (2011) and Ace-

moglu, Carvalho, Ozdaglar, and Tahbaz-Salehi (2012). In their approach,

the break is caused by fat-tailed distributions of firm size or the firms’ het-

erogeneous influence on other firms. This paper complements their findings

by demonstrating the aggregate fluctuations even when the firm size and

the influence vector are homogeneous. The fluctuation mechanism in this

paper is most closely related to the self-organized criticality models (Bak,

Chen, Scheinkman, and Woodford (1993)). In those models, an individual

action causes an “avalanche” of other actions, and the avalanche size follows

a fat-tail distribution. While the preceding self-organized criticality models

feature locally interacting firms, this paper is concerned with firms that in-

teract globally (i.e., with all the other firms) in goods markets in a dynamic

general equilibrium.

The rest of this paper is organized as follows. Section 2 presents a dy-

namic general equilibrium model with indivisible capital. I present a model

with a continuum of firms and a model with a finite number of firms. The

equilibrium dynamics for the former model coincides with the expectation

system for the latter model with approximation. By numerically simulating

the finite model, I show that equilibrium paths mimic the business cycles in

the magnitude of standard deviations and correlations. Section 3 analytically

shows that aggregate fluctuations arise in a model without aggregate shocks.
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Section 4 discusses the issues on model assumptions and implications. Sec-

tion 5 concludes. Most proofs are shown in the Appendix, and some detailed

derivations are shown in a separate Technical Appendix accompanying this

paper.

2 Model

In this section, I construct a dynamic general equilibrium model with indivis-

ible investments and predetermined prices of goods. I first present a model

with a continuum of firms, and then present a model with a finite number

of firms. The equilibrium system of the continuum economy turns out to

coincide with the expectation system in the finite economy.

2.1 Continuum economy

2.1.1 Households

There is a representative household with King-Plosser-Rebelo preference.

The representative household maximizes utility

Et

[
∞∑
τ=t

βτ−tC1−σ
τ (1− ψLζτ )1−σ/(1− σ)

]

by choosing consumption Cτ and labor supply Lτ subject to Cτ = wτLτ +

Dτ , ∀τ . Dt denotes aggregate dividends that the household receives from

firms. Each firm i owns capital and delivers dividend di,t. Households as

shareholders instruct each firm to maximize its expected discounted sum of

dividends stream Et [
∑∞

τ=t ∆t,τdi,t]. The discount factor is ∆t,τ ≡ Πτ
s=t+1R

−1
s ,
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where ∆t,t = 1 by convention, and Rt is the inverse of a stochastic discount

factor

R−1
t ≡ βC−σt (1− ψLζt )1−σ/(C−σt−1(1− ψLζt−1)1−σ). (1)

The representative household consumes a composite consumption good

that is produced by a CES function Ct = (
∫
z

(η−1)/η
c,i,t di)η/(η−1), where η > 1 is

the elasticity of substitution. Let pi,t denote the price of good i, and let the

aggregate price (
∫
p1−η
i,t di)

1/(1−η) be normalized to 1. A household’s cost mini-

mization yields the demand function for zc,i,t, which satisfies
∫
pi,tzc,i,tdi = Ct.

The first-order conditions with respect to Ct and Lt yield:

wt = CtψζL
ζ−1
t /(1− ψLζt ). (2)

2.1.2 Firms

In this section, I suppose that there are a continuum of firms indexed by

i ∈ [0, 1]. Each firm has a Cobb-Douglas production function with constant

returns to scale: yi,t = ai,tk
α
i,tl

1−α
i,t . Productivity ai,t is a random variable,

independently and identically distributed across i and t. I assume that each

firm knows the realization of ai,t in period t−1. I also assume that the support

of log ai,t is bounded so that Pr(| log ai,t−log ai,t−1| < | log(1−δ)|α(1/ρ−1)) =

1, where δ and ρ are parameters as defined below.

Firm i produces good i monopolistically, and it faces demand function

yi,t = p−ηi,t Yt, where Yt ≡ (
∫
y

(η−1)/η
i,t di)η/(η−1) denotes the aggregate output.

Firm i owns physical capital ki,t, which accumulates as ki,t+1 = (1− δ)ki,t +

xi,t. The investment good is produced by the CES function similar to the

consumption good: xi,t = (
∫
z

(η−1)/η
i,j,t dj)η/(η−1). The dividend paid by i is

di,t = pi,tyi,t − wtli,t − xi,t. The aggregate dividend is Dt =
∫
di,tdi.
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I assume that the firm’s capital choice is restricted to be binary: ki,t+1 ∈

{(1−δ)ki,t, λi(1−δ)ki,t}, where λi(1−δ) > 1. Capital ki,t+1 has to be either at

the depreciated level (1−δ)ki,t or the depreciated level multiplied by the firm-

specific indivisibility parameter λi. This binary constraint is equivalent to

assuming that the firm can choose gross investment rate xi,t/ki,t only either at

0 or (λi−1)(1− δ), namely, inaction or lumpy investment, respectively. This

constraint reflects the indivisibility of physical investment such as equipment

and structure. It can also be interpreted as a shortcut for modeling the lumpy

behavior, which typically occurs as an optimal investment policy under fixed

adjustment costs. This paper is concerned with the aggregate consequence

of the non-linear behavior of firms induced by this indivisibility.

I assume that firm i commits to the price of its product pi,t one pe-

riod ahead. Namely, firm i decides pi,t in period t − 1. Once the demand

for yi,t is realized in t, firm i meets the demand by adjusting labor hours li,t.

Thus, firm i’s problem in period t−1 is to maximize Et−1

[∑∞
τ=t−1 ∆t−1,τdi,τ

]
by choosing pi,t and ki,t subject to the demand function, production func-

tion, and binary constraint for capital. The optimal price is solved as pi,t =

(a
1/α
i,t ki,t/Kt)

−α/(η(1−c1)), where c1 ≡ (1−1/η)(1−α), ρ ≡ α(1−1/η)/(1−c1),

and Kt ≡ (
∫
a
ρ/α
i,t k

ρ
i,t di)

1/ρ. Substituting pi,t in the demand function and

aggregating across i, I obtain

Kt =
(

Et−1[(wt/c1)Y
1/(1−α)
t /Rt]/Et−1[Yt/Rt]

)(1−α)/α

. (3)

By using the optimal price, firm i’s problem in period t− 1 boils down to

choosing ki,t from a binary set to maximize π(ki,t) = (1−c1)Et−1[Yt/Rt]a
ρ/α
i,t (ki,t/Kt)

ρ−

(1− (1− δ)Et−1[R−1
t ])ki,t. The optimal strategy for firm i is to invest in t− 1

when (1− δ)ki,t−1 is below a threshold level k∗i,t, and not to invest otherwise.
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At the threshold, the firm must be indifferent between investing and not in-

vesting. This implies π(λik
∗
i,t) = π(k∗i,t), because the capital stream after t+1

when investing in t−1 coincides with that when the investment is deferred to

t. Threshold k∗i,t is uniquely and explicitly obtained by solving this equation,

as π is strictly concave since ρ < 1.

2.1.3 Market-clearing conditions

Consumption Ct and investment xi,t are composite goods, and the derived

demand for good j is denoted by zc,j for a household and zi,j for firm i.

Thus, the goods markets clear by yj,t = zc,j,t +
∫
zi,j,tdi, ∀j. Aggregating

these under cost-minimization conditions, I obtain

Yt = Ct +Xt, (4)

where Xt ≡
∫
xi,tdi is aggregate investment.

The labor market clearing condition is Lt =
∫
li,tdi. By substituting the

price-setting rule in labor demand li,t = (p−ηi,t Yt/(ai,tk
α
i,t))

1/(1−α) and aggre-

gating, I obtain an aggregate production function:

Yt = Kα
t L

1−α
t . (5)

2.1.4 Capital gap distribution

I define capital gap as the difference between actual and threshold capital

normalized by lumpiness: si,t ≡ (log ki,t−log k∗i,t)/ log λi. This gap si,t always

takes a value between 0 and 1 at equilibrium. Using si,t, the aggregate capital

can be written as Kt = (
∫
a
ρ/α
i,t λ

ρsi,t
i k∗ρi,tdi)

1/ρ. Using this, I obtain a marginal
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cost condition and a threshold rule as follows:

1 =

(∫
a

ρ
α(1−ρ)
i,t

(
λρi − 1

λi − 1

) ρ
1−ρ

λ
ρsi,t
i di

) 1−ρ
ρ

Bt−1, (6)

Bt−1 ≡
(1− c1)Et−1[Yt/Rt]

1
α

(1− (1− δ)Et−1[R−1
t ])Et−1[(wt/c1)Y

1
1−α
t /Rt]

1−α
α

, (7)

k∗i,t = bi,tKt, (8)

bi,t ≡ Bt−1

(
a
ρ/α
i,t (λρi − 1)/(λi − 1)

)1/(1−ρ)

. (9)

The capital gap develops as

si,t+1 =

(
log(1− δ) + log k∗i,t − log k∗i,t+1

log λi
+ si,t + 1

)
mod 1, (10)

where “x mod 1” denotes the remainder after division of x by 1. Starting

from an initial state si,0, si,t is given as natural depreciation t log(1−δ) divided

by log λi, plus a random variable, and taken modulo 1. When 1/ log λi has a

density, this remainder converges to a uniform distribution on a unit interval

(Engel, 1992, 3.1.1).

Proposition 1 As t → ∞, si,t converges in distribution to a uniform ran-

dom variable in [0, 1).

The proof is in Appendix A. Proposition 1 corresponds to a robust fea-

ture of one-sided (S,s) economies as shown in Caplin and Spulber (1987)

and Caballero and Engel (1991). Note that the cross-section distribution of

si,t stays at the uniform distribution even if aggregate variables fluctuate,

since a shift in Kt merely rotates the distribution of si,t on a circle of unit

circumference.
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2.1.5 Aggregate variables under a stationary gap distribution

Since there are a continuum of firms, idiosyncratic shocks ai,t are aggregated

out and there is no aggregate risk in this economy. Thus, (3) is reduced to

Kt = (wt/c1)
1−α
α Yt. (11)

I consider the case of a stationary gap distribution. Substituting the uniform

distribution of si,t in (6) and using (11), I obtain a familiar condition on

marginal costs in the constant returns to scale economy:

1 = aρ−1(1− c1)(wt/c1)−
1−α
α (Rt − 1 + δ)−1, (12)

a ≡

∫ ( λρi − 1

(λi − 1)ρ

) 1
1−ρ a

ρ
α(1−ρ)
i,t

ρ log λi
di

− 1
ρ

. (13)

Under the stationary distribution, the threshold becomes a function of only

the idiosyncratic productivity and the aggregate capital:

k∗i,t/Kt = bi,t = a
(
a
ρ/α
i,t (λρi − 1)/(λi − 1)

)1/(1−ρ)

. (14)

The threshold capital k∗i,t can be translated to threshold gap s∗i,t, where

firms with si,t ∈ [0, s∗i,t) invest in t. Since ai,t+1 is known to i in t, si,t+1 = 0

holds at si,t = s∗i,t. Thus, the threshold is obtained from (10) as

s∗i,t =
log k∗i,t+1 − log k∗i,t

log λi
− log(1− δ)

log λi
. (15)

Due to the assumption of bounded increment of log ai,t, gap si,t always de-

creases over time unless there is an upward jump by 1. Aggregate gross

investment under the stationary uniform distribution of si,t is then written
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as follows:2

Xt =

∫ ∫ s∗i,t

0

(λi − 1)(1− δ)λsi,ti k∗i,tdsi,t di = ρa1−ρ(Kt+1 − (1− δ)Kt). (16)

2.1.6 Equilibrium

I consider an economy in which capital gap si,0 has achieved a stationary uni-

form distribution across i. An equilibrium consists of pricing functions w(K)

and R(K), the law of motion for K, and aggregate allocation (Y,X,C, L,D)

such that the allocation solves the household’s problem given prices, that the

law of motion and the allocation are consistent with the firms’ optimal invest-

ment policy, and that the goods and labor markets clear. The equilibrium

path satisfies the system of equations (1, 2, 4, 5, 6, 11, 16). Bar denotes the

steady-state values. By log-linearizing the system around the steady state,

it is shown that the equilibrium path is locally determinate under a mild

condition.3

Proposition 2 There exists a unique saddle point path for the log-linearized

system of (1, 2, 4, 5, 6, 11, 16), if X̄/Ȳ ≤ α holds.

2.2 Finite economy

In this section, I turn to an economy where there are many but finite N firms

instead of a continuum of firms. The economy experiences some fluctuations

due to finite idiosyncratic shocks. I will show that the fluctuation of aggregate

investment Xt remains non-trivial even when N is large. As before, I employ

2See the Technical Appendix for a detailed derivation.
3The proof is standard and provided in the Technical Appendix.
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a sticky price assumption, under which firm i commits itself to meeting the

demand in t at price pi,t that is decided in period t−1. When Xt differs from

the expected level due to finite shocks, firms adjust their labor demand,

and the labor market clears by adjusting the nominal wage. Thus, under

predetermined prices, the investment shock causes quantity adjustments in

hours worked, production, and consumption.

Aggregate variables are now redefined by averages such as Yt ≡ (
∑N

i=1 y
(η−1)/η
i,t /N)η/(η−1),

Ct = (
∑N

i=1 z
(η−1)/η
c,i,t /N)η/(η−1), Xt ≡

∑N
i=1 xi,t/N , Kt ≡ (

∑N
i=1 a

ρ/α
i,t k

ρ
i,t/N)1/ρ,

and Pt ≡ (
∑N

i=1 p
1−η
i,t /N)1/(1−η)(= 1). The labor market clearing condition is

Lt =
∑N

i=1 li,t/N . Similar to the continuum case, equilibrium conditions are

derived as (1, 2, 3, 4, 5, 7, 8) and

Kt+1 =

 ∑
i:(1−δ)ki,t<k∗i,t+1

(λi(1− δ)ki,t)ρ

N
+

∑
i:(1−δ)ki,t≥k∗i,t+1

((1− δ)ki,t)ρ

N

 1
ρ

,

(17)

Xt ≡
∑

i:(1−δ)ki,t<k∗i,t+1

(λi − 1)(1− δ)ki,t, (18)

1 =

(
N∑
i=1

a
ρ

α(1−ρ)
i,t

(
λρi − 1

λi − 1

) ρ
1−ρ λ

ρsi,t
i

N

) 1−ρ
ρ

Bt−1. (19)

The state space involves the distribution of gap si,t, which is included in

the information set for the conditional expectation in period t and affects

the summations in (17–19). The equilibrium is similar to that of Krusell and

Smith, Jr. (1998) and is difficult to solve exactly. Thus, I approximate the

equilibrium system by using the stationary distributions of si,t and ai,t with

a continuum of firms. By this approximation, the summations across i in

(17–19) are replaced with integrals over the uniform distribution of si,t. I
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assume that agents use this approximated equilibrium system to form expec-

tations of future variables, whereas the exact realizations of k∗i,t+1, Kt+1, Xt

are determined by (8, 17, 18) while keeping summations. Then, the system

of equations for the agents’ forecast becomes (1, 2, 3, 4, 5) and

1 =
aρ−1(1− c1)Et−1[Yt/Rt]

1
α

(1− (1− δ)Et−1[R−1
t ])Et−1[(wt/c1)Y

1
1−α
t /Rt]

1−α
α

, (20)

Ke
t+1 = (1− δ)Kt + (aρ−1/ρ)Xe

t , (21)

Xt = Xe
t e
εt , (22)

Kt+1 = (1− δ)Kt + (aρ−1/ρ)Xt = Ke
t+1 + (aρ−1/ρ)Xe

t (e
εt − 1). (23)

The aggregate investment demand shock εt enters (22), representing the dif-

ference between realized and expected investments.

The expectation system (1, 2, 3, 4, 5, 20, 21, 22, 23) is approximated

in the first order as follows. Let tilde denote log-difference from the steady

state. Following Sims (2001), for the log-difference variables, time-subscripts

indicate the period in which the variable is observable to agents. For example,

a predetermined variable Kt corresponds to K̃−1, while Et−1Ct corresponds
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to E−1C̃0. The log-linearized expectation system is

K̃0 = (1− δ)K̃−1 + δX̃0,

Ỹ0 = (C̄/Ȳ )C̃0 + (X̄/Ȳ )X̃0,

Ỹ0 = αK̃−1 + (1− α)L̃0,

E−1Ỹ0 = K̃−1 −
1− α
α

E−1w̃0,

w̃0 = C̃0 +
(
ζ − 1 + w̄L̄/C̄

)
L̃0,

0 =
1− α
α

E−1w̃0 +
R̄

R̄− 1 + δ
E−1R̃0,

R̃0 = σ(C̃0 − C̃−1)− (σ − 1)(w̄L̄/C̄)(L̃0 − L̃−1),

X̃0 = E−1X̃0 + ε0,

C̃0 = E−1C̃0 + ηC0 , L̃0 = E−1L̃0 + ηL0 ,

Ỹ0 = E−1Ỹ0 + ηY0 , w̃0 = E−1w̃0 + ηw0 ,

where (ηC0 , η
L
0 , η

Y
0 , η

w
0 ) are expectation errors caused by the expectation error

in investment, ε0.

The certainty equivalence of the log-linearized expectation system coin-

cides with the log-linearized equilibrium system of a continuum economy.

Thus, the expectation system has a determinate solution. Combined with εt,

the equilibrium path fluctuates around the determinate saddle point path.

Proposition 3 There exists a unique saddle point path for the expectation

system if X̄/Ȳ ≤ α holds.

The proof is provided in the Technical Appendix.
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2.3 Investment demand shock

In a finite economy, the investment demand shock εt is defined as a log-

difference between realized aggregate investment Xt and expected aggregate

investment Et−1Xt. Xt is determined along with Kt+1 and k∗i,t+1 by (8, 17, 18)

given exact capital ki,t and realized productivity ai,t+1. Et−1Xt is determined

by the expectation system (1, 2, 3, 4, 5, 20, 21, 22, 23) given Kt. The

deviation of actual aggregate investment from the expected value is caused

by idiosyncratic productivity shocks ai,t+1 for a finite number of firms and

the deviation of the gap distribution from the uniform distribution.

Due to the non-linear decision of ki,t+1 with strategic complementarity

across i, there can be multiple solutions for (8, 17) for each state (ki,t, ai,t+1)i.

For those cases, I set an equilibrium selection rule that picks the solution that

minimizes |εt| among all the solutions. Namely, this selection rule picks the

equilibrium path that minimizes the deviation from the expected equilibrium

path determined by the continuum counterpart. In numerical simulations, εt

is computed as follows. First, εt is set to 0, and Kt+1 and k∗i,t+1 are computed

given ki,t. If Xt under the threshold k∗i,t+1 coincides with Et−1Xt, then εt is

determined at 0. Otherwise, εt is adjusted slightly, and the above procedure

is repeated until the selected outcome is obtained.

2.4 Calibration and numerical simulations

For a benchmark calibration, I set the unit of time as a quarter. The pa-

rameters for technology and preference are set at standard values as in Table

1. Firms’ markup rate 1/(η − 1) is set at 10%. The capital intensity α is
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set such that the labor share w̄L̄/Ȳ is equal to 0.67. The annual rate of

depreciation is set at 8% and the annual risk free rate at 4%. The disutility

from labor is specified as a quadratic function. Indivisibility parameter λi

is a random variable drawn in period 0 and fixed for later periods. I set

that λi is drawn from a normal distribution with mean 1.028 and standard

deviation 0.004 truncated at two standard deviations. I choose this specifi-

cation to match with the 2.8% plant Herfindahl index estimated by Ellison

and Glaeser (1997). Plant Herfindahl measures the representative share of a

plant’s employment in an industry. When capital size is adjusted by changing

the number of plants, plant Herfindahl can be interpreted as a lower bound

of capital indivisibility, which coincides with firm-level capital indivisibility

if the industry is a monopoly. These parameters and steady state values for

the benchmark specification are summarized in Table 1.

The number of firms N is set at 350000 to match with the number of

operating manufacturing plants in the US (Cooper, Haltiwanger, and Power

(1999)). The logarithm of the idiosyncratic productivity log ai,t is assumed

to follow a normal distribution with standard deviation 0.05%. The mean

productivity is set such that the mean of a
ρ/(α(1−ρ))
i,t (which appears in the

threshold rule (8)) is normalized to 1. In the initial period, si,0 is randomly

drawn from a uniform distribution, and in each period, productivity ai,t is

drawn independently. The equilibrium path is simulated for 1100 periods,

from which the first 100 periods are discarded. Table 2 reports the standard

deviations and comovement structure of output, consumption, investment,

hours worked, and capital.4 As can be seen, the model is able to generate ag-

4The reported moments are averages of 10 simulated runs. Figures in parentheses are

19



gregate investment fluctuations to the magnitude comparable to the business

cycles.

α δ σ β η ψ ζ E(λi) w̄L̄/Ȳ R̄ C̄/Ȳ K̄/Ȳ 1− ψL̄ζ

0.26 0.02 1.5 0.99 11 1 2 1.028 0.67 1.01 0.84 7.74 0.72

Table 1: Benchmark calibration and endogenous steady-state values

Standard deviation (%) Correlation with Ỹ

Ỹ C̃ X̃ L̃ K̃ C̃ X̃ L̃ K̃

Benchmark 2.23 0.85 6.44 3.02 0.26 0.820 0.979 0.793 -0.020

(0.06) (0.02) (0.17) (0.08) (0.01) (0.004) (0.001) (0.004) (0.005)

σ = 3 3.48 2.83 6.42 5.26 0.25 0.928 0.900 0.924 -0.171

E[λi] = 1.056 4.23 1.59 12.21 5.62 0.50 0.828 0.978 0.800 -0.011

N = 100000 2.18 0.83 6.30 2.95 0.23 0.818 0.979 0.791 -0.032

Table 2: Standard deviations and correlations of key business cycles variables

The fluctuations in aggregate variables are driven mostly by investment

demand shocks εt, while movements in capital play little role. The investment

demand shock εt propagates to other variables in two paths: Kt+1 and Yt.

On one hand, an investment demand shock generates an exogenous increase

in future capital Kt+1. This raises future labor productivity and real wage.

The prospect of increased labor productivity induces households to consume

more in both the next period and the current period. This effect can be

seen in the saddle point path in which the marginal utility of consumption is

standard errors.
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negatively related to capital. On the other hand, an increase in investment

demand raises aggregate demand for contemporaneous goods, provided that

consumption demand is unaffected. Firms respond to the increased demand

by increasing labor demand, which raises real wage. Households respond

to the higher real wage by raising hours worked, which in turn raises the

marginal utility of consumption when σ > 1. Thus, in order to keep the

marginal utility lower so that it is on the saddle point path, consumption de-

mand must increase. Hence, the investment demand shock raises consump-

tion, and thus, output. In Table 2, I observe that the standard deviation of

consumption relative to investment is larger when σ is greater. This result

is consistent with the propagation mechanism described above, because the

hours-consumption complementarity, given a fixed marginal utility of con-

sumption, becomes larger when σ − 1 is greater.

3 Analytical Results

3.1 Random gap distribution

At the heart of the aggregate fluctuations arising from idiosyncratic shocks

in the simulations lay the non-linearity and complementarity of firm-level

investment decisions. The capital decision ki,t+1 is non-linear because of in-

divisibility and threshold policy. Average capital level Kt+1 affects threshold

k∗i,t+1 linearly, but it may or may not induce an adjustment of capital ki,t+1.

Individual capital is insensitive to a small perturbation in average capital,

while it synchronizes with average capital if the perturbation is large.

In this section, I analytically derive the distribution of the aggregate
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capital fluctuations. To achieve this, I draw si,t from a stationary distribution

uniform over [0, 1). Similar to Proposition 1 in the continuum economy, si,t in

the finite economy converges to a uniform distribution as t→∞, independent

across i. This implies that the probability of drawing a particular profile

(si,t)i from an N -dimensional jointly uniform distribution corresponds to the

likelihood of the profile realizing in the course of gap profile evolution in a

far future.

3.2 Equilibrium selection

For each realization of gap and productivity profile (si,t, ai,t+1)i, and given the

expected aggregate capital Ke
t+1, capital profile in the next period (ki,t+1)i is

determined by (8, 17). Thus, the distribution function of the growth of Kt is

determined by the joint distribution function of (si,t, ai,t+1), if this mapping

is one-to-one. In case where there are multiple solutions for (8, 17), I selected

the outcome in numerical simulations in Section 2.4 by the following criterion.

Equilibrium Selection 1 For each initial capital vector (ki,t), pick the equi-

librium aggregate capital Kt+1 that attains the minimum of | logKt+1−logKe
t+1|

among all Kt+1 that solve (8, 17).

By this mechanism, I construct the least-possible volatile fluctuations of

aggregate capital in equilibrium. To facilitate the analysis of this equilib-

rium, I define another selection mechanism as an auxiliary. First, I define

(17) as an aggregate reaction function K ′ = Γ(K; (ki,t, ai,t+1)i) for the case of

homogeneous indivisibility λi = λ. K enters Γ via threshold k∗i,t+1 = bi,t+1K,

where bi,t+1 is determined by (14). Γ(K) represents the aggregation of in-
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K

Γ(K)

K0
e

K2K1

45 degree line

M

m1

Figure 1: Aggregate reaction function Γ. K1 is selected by Equilibrium

Selection 1 since | logK1 − logKe
0 | < | logK2 − logKe

0 |. K2 is selected by

Equilibrium Selection 2 as sign(logK2− logKe
0) = sign(log Γ(Ke

0)− logKe
0).

dividual capital when each firm optimally responds to aggregate capital K.

Equilibrium aggregate capital is a fixed point of this reaction function. As

depicted in Figure 1, Γ is a non-decreasing step function.

Then, I define a new selection mechanism as follows:

Equilibrium Selection 2 For each initial capital vector (ki,t), pick the equi-

librium aggregate capital Kt+1 that attains the minimum of | logKt+1−logKe
t+1|

among all Kt+1 that solve (8, 17) and satisfy sign(logKt+1 − logKe
t+1) =

sign(log Γ(Ke
t+1)− logKe

t+1).

This mechanism selects the equilibrium aggregate capital that is closest

to the initial aggregate capital in the direction toward which the firms are
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induced to adjust by the expected aggregate capital. In Figure 1, this mech-

anism selects K2. Vives (1990) showed that the equilibrium selected by this

mechanism can be reached as a convergent point of the best-response dy-

namics Ku+1 = Γ(Ku) starting at Ke
0 . Cooper (1994) supported the use of

this selection mechanism in macroeconomics on the grounds that the best-

response dynamics is a realistic tatonnement process in a situation where

many agents interact with each other. The only information needed for an

agent to make decisions in the tatonnement is the aggregate capital level.

Besides, this selection mechanism excludes the possibilities of big jumps that

arise from a purely informational coordination among agents.

3.3 Homogeneity and extended policy function

I first analyze the fluctuation of the equilibrium selected by the second mech-

anism, and then proceed to analyze the one selected by the first mechanism.

In this section, I concentrate on a homogeneous setup in which indivisibility

and productivity are common across firms: λi = λ and ai,t = 1. General-

ization to the case of heterogeneous indivisibility is discussed in Section 4.2.

In this homogeneous setup, the only source of deviation from the expected

aggregate capital is gap si,t. Model agents form expectations by the approx-

imated gap distribution that is uniform over unit interval. Realization of a

finite-length vector (si,t)i necessarily deviates from the uniform distribution.

This deviation from the uniform distribution corresponds to the deviation of

the aggregate reaction function Γ from the 45 degree line in Figure 1. This

deviation is quite small when N is large. Nonetheless, I show below that

the difference between equilibrium aggregate capital and the expected one
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persists even when N tends to infinity.

With fixed productivity, an indivisible investment is induced only by nat-

ural depreciation and aggregate capital movements, and the threshold s∗i,t in

(15) is simplified as s∗t = (logKt+1− logKt− log(1−δ))/ log λ. Below, I work

with an extended policy function k∗i = bKφ by introducing a new parameter

φ ∈ (0, 1]. The original policy function is a special case when φ = 1. Γ is

redefined with this extended policy function, and b is defined by (9) with

homogeneity. The threshold for si,t becomes

s∗t = (φ(logKt+1 − logKt)− log(1− δ))/ log λ. (24)

With φ = 1, this corresponds to the original threshold (15). φ determines the

strength of positive feedback from aggregate capital to individual investment

decisions, and thus it represents the degree of strategic complementarity be-

tween investments. Introducing φ helps clarifying the role of complementarity

in generating aggregate fluctuations in the following analysis.

3.4 Distribution of aggregate capital growth rate

The equilibrium aggregate capital growth rate, logKt+1 − logKt, consists

of an anticipated part logKe
t+1 − logKt and an unanticipated part gt+1 ≡

logKt+1 − logKe
t+1. The former part is deterministic, since the expectation

system determines Ke
t+1 given Kt. I focus on the distribution of the unantic-

ipated growth gt+1. I introduce a notation qt ≡ log λ/(φ(logKe
t+1− logKt)−

log(1− δ)). This is an inverse of the anticipated shift in k∗t+1. At the steady

state, qss represents the natural frequency of a firm’s capital adjustment.

Henceforth, I drop the time subscript t from all variables, and focus on g
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given expected capital Ke
0 .

Unanticipated growth g is divided into two parts: adjustments in the

initial round of fictitious tatonnement and subsequent adjustments. The first

part, measured as the number of firms, is denoted as m1 ≡ N(log Γ(Ke
0) −

logKe
0)/ log λ (see Figure 1). If m1 = 0, then K2 = Ke

0 constitutes the

equilibrium aggregate capital selected by mechanism 2. Otherwise, K2 6= Ke
0 .

I state the main technical result here.

Proposition 4 Under equilibrium selection 2, Ng converges in distribution

to (m1 +M) log λ, where M conditional on m1 > 0 follows:

Pr(M = w | m1) = m1e
−φ(w+m1)φw(w +m1)w−1/w! (25)

for w = 0, 1, . . .. The unconditional distribution of m1 + M is symmetric.

The tail of distribution (25) is approximated by

Pr(M = w | m1) ∼ (m1e
(1−φ)m1/

√
2π)e−(φ−1−log φ)ww−1.5. (26)

m1/
√
N asymptotically follows a normal distribution with mean zero and

variance σ2
1 = (1− λ−2ρ/q)/(2ρ log λ)− ((1− λ−ρ/q)/(ρ log λ))2.

The proof is deferred to Appendix D. Here, I outline the proof. I use a

fictitious tatonnement as a workhorse for characterizing the aggregate fluctu-

ations. The fictitious tatonnement is defined by the best-response dynamics
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of capital profile:

ki,1 =

 λ(1− δ)ki,0 if (1− δ)ki,0 < k∗i,0

(1− δ)ki,0 otherwise
, (27)

ki,u+1 =


λki,u if ki,u < k∗i,u

ki,u/λ if ki,u ≥ λk∗i,u

ki,u otherwise

, (28)

where Ku =
(∑

i k
ρ
i,u/N

)1/ρ
and k∗i,u = bKφ

u . Subscript u represents a step in

the fictitious tatonnement. Note that the best-response dynamics is consis-

tent with the aggregate response function Ku+1 = Γ(Ku).

The expected number of firms that adjust capital in the first step is

N/q. Their investments may not exactly balance with aggregate capital

depreciation: Γ(Ke
0) may not coincide with Ke

0 . If not, the optimal threshold

is updated under new aggregate capital and the adjustments in the second

step take place. This procedure is iterated until there are no more firms that

newly adjust.

Subsequent adjustments after the first step are measured in the number of

firms that adjust capital upward in step u, denoted by mu for u = 2, 3, . . . , T .

If firms adjust downward (i.e., some firms that decide to invest in the first

step, retract), mu is set as negative. Series mu are either positive or negative

for all u depending on m1 > 0 or m1 < 0. M ≡
∑T

u=2 mu denotes the

total number of firms that adjust capital subsequently after the first step of

tatonnement. T is the stopping time of the tatonnement: T ≡ minu:mu=0 u.

The equilibrium capital vector is determined by the convergent point of the

dynamics, ki,T . m1 +M indicates the total deviation of the investment from

the stationary level in terms of the number of firms.
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In the first step toward Proposition 4, I show that the capital growth rate

is asymptotically proportional to the number of firms that adjust.

Lemma 1 N(logKu+1− logKu) converges to mu+1 log λ as N →∞ almost

surely for u = 1, 2, . . . , T − 1.

The proof is in Appendix B. Lemma 1 implies that N(logK2− logKe
0)→

(m1 + M) log λ. Thus, the computation of g reduces to counting the total

number of investing firms net of the expected number of investing firms. I

then show that the number of adjusting firms in the tatonnement asymptot-

ically follows a Poisson branching process.

Lemma 2 mu for u = 2, 3, . . . , T asymptotically follows a branching process,

in which each firm in mu bears firms in step u + 1 whose number follows a

Poisson distribution with mean φ.

The proof is in Appendix C. A branching process is an integer stochastic

process of a population in which each parent in a generation bears a random

number of children in the next generation. In a Poisson branching process,

the number of children borne by a parent is a Poisson random variable. It is

known that a branching process converges to 0 in a finite time period with

probability 1 if the mean number of children borne by a parent is less than

or equal to 1 (Feller, 1957, p.276). This fact confirms that the best-response

dynamics stops in a finite time T with probability 1 when φ ≤ 1. Thus,

the best-response dynamics is a valid algorithm of equilibrium selection even

when N → ∞. Moreover, the cumulative population size of the Poisson

branching process is known to follow a Borel-Tanner distribution (Kingman,
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1993, p.68). By combining the Borel-Tanner distribution with the Poisson

distribution for m2, I obtain the desired distribution (25).

By Stirling’s formula, the tail of (25) is approximated by (26). (26)

shows that g conditional on m1 asymptotically follows a gamma-type dis-

tribution that combines a power function w−1.5 and an exponential function

e−(φ−1−log φ)w. Note that φ − 1 − log φ > 0 for φ < 1. Since an exponen-

tial function declines faster than a power function, the tail distribution is

dominated by the exponential when φ < 1. Thus, the degree of strategic

complementarity φ determines the speed of the exponential truncation of the

distribution.

φ = 1 holds in the business cycles model in Section 2, and in this case,

the distribution (26) becomes a power-law distribution with exponent 0.5.

Whether the tail obeys an exponential decay or a power decay has an impor-

tant implication for the moments of the distribution. If the tail decays expo-

nentially, any k-th moment exists, because
∫∞

0
xke−xdx is a gamma function

and thus finite. To the contrary, if the tail decays in power with exponent α,

only the moments lower than α exist, since
∫∞

xkx−α−1dx is finite only for

k < α. When the exponent of the power law is 0.5, even the mean diverges.

The macro-level fluctuation observed in the numerical simulations ensues

from the criticality condition φ = 1, which results in the power-law tail of the

capital growth distribution. When this condition is not met, the aggregate

fluctuations eventually die down as the number of firms increases to infinity.

This is because φ, the mean number of children per parent, determines the

trend population growth in the branching process. The mean population

of the n-th generation is φn given a single initial parent. The population
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diverges to infinity when the process is supercritical, φ > 1, whereas the

population decreases to zero if subcritical, φ < 1. At the critical point φ = 1,

the population of a generation decreases to zero with probability 1 and yet

the mean cumulative population diverges to infinity.

3.5 Aggregate fluctuations with an arbitrarily large N

The distribution of M conditional on m1 follows a pure power-law distribu-

tion when φ = 1. With exponent 0.5, the power-law distribution does not

have either mean or variance. The conditioning variable m1, which repre-

sents the initial deviation from expected capital in the tatonnement, obeys

the law of large numbers and its variance decreases linearly in N . These two

effects cancel out in the unconditional variance of (m1 +W )/N , as I state in

the following proposition.

Proposition 5 The variance of g converges to a non-zero constant as N →

∞ when φ = 1. The limit standard deviation is (log λ)
√

(2/π)(σ1 + 1/3)σ1.

The proof is deferred to Appendix E. The main idea is as follows. Propo-

sition 4 showed that m1/
√
N asymptotically follows a normal distribution

with finite variance. This implies that the mean of absolute value |m1|

scales as
√
N . Proposition 4 also showed that Ng/ log λ − m1 conditional

on m1 = 1 follows a power-law distribution with exponent 0.5 if φ = 1.

Then, the variance of Ng conditional on m1 = 1 diverges as N1.5, because∫ N
x2x−1.5dx ∼ N1.5. Combining these two results, I obtain that Ng uncon-

ditional on m1 has variance scaling as N2, since Ng can be divided into
√
N
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sub-population sets, each of which has variance that scales as N1.5. Hence,

the variance of g scales as N0.

The argument above shows that the power-law distribution is essential

in obtaining scale-invariant fluctuations for g. The key environment for the

power law, φ = 1, can be interpreted as perfect complementarity of indivisible

investments. By perfect complementarity I mean that a proportional increase

in capital of all the other firms induces the same proportional increase in the

capital of a firm, if the increment is much larger than the indivisibility. Due to

the indivisibility of capital, however, a shock smaller than indivisibility does

not cause a symmetric movement across firms. Thus, the firm’s investment

behavior at criticality may be summarized as local inertia combined with

global perfect complementarity.

It might appear counterintuitive that the aggregate variance does not

converge to zero when there are only idiosyncratic discrepancies in the initial

capital gap. Note that in a smoothly-adjusting, competitive economy, the

aggregate capital level is indeterminate in the production sector if the firms’

investment decisions are perfect complements due to the constant returns to

scale technology. In the present model, the equilibrium is locally unique be-

cause of the indivisibility of capital. Nonetheless, the globally indeterminate

environment makes it possible for the aggregate fluctuations to reappear in

the form of the power-law distribution.

The limit standard deviation of g in Proposition 5 is determined by indi-

visibility parameter λ and periodicity q of capital oscillation at the firm level.

Numerical examples for the standard deviation shown in Table 3 suggest that

an empirically plausible range of indivisibility can generate the magnitude of
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Markup (µ− 1) 0.02 0.2

Indivisibility (log λ) 0.02 0.05 0.1 0.2 0.02 0.05 0.1 0.2

4 0.92 2.29 4.56 9.07 0.92 2.29 4.57 9.10

Periodicity (qss) 6 0.82 2.04 4.07 8.11 0.82 2.04 4.08 8.13

8 0.75 1.87 3.73 7.43 0.75 1.87 3.73 7.44

Table 3: Limit standard deviations of the aggregate capital growth rate

(percent)

fluctuations observed in the frequency of business cycles.

I also note that the indivisibility parameter log λ has an almost propor-

tional effect on the aggregate standard deviation when periodicity q is held

constant. This is because the fluctuation magnitude shows little dependence

on the markup rate. In fact, the standard deviation does not significantly

change even when the markup rate goes to infinity, at which σ2
1 is simplified

to (1− 1/q)/q. The proportional impact of log λ on the aggregate standard

deviation can be also seen in numerical simulation, as in Table 2. This im-

plies that the indivisibility of capital provides a foundation for the sizable

idiosyncratic volatility of the firm-level decisions, which in turn has one-to-

one impact on the aggregate volatility.

3.6 Equilibrium selection as in the simulation

Finally, I investigate the magnitude of the fluctuation in aggregate capital

selected by equilibrium selection 1. Let g1 denote the capital growth rate

under this selection. I obtain the following result.
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Proposition 6 Under equilibrium selection 1, the convergence of the vari-

ance of g1 to zero as N →∞ is not faster than 1/
√
N if φ = 1.

Proof is in Appendix F. Proposition 6 shows that if I choose the least-

volatile equilibrium, the variance of the capital growth rate decreases to zero

as N increases, but at a rate much slower than what the central limit theorem

predicts. In the Long-Plosser model with continuous capital adjustments, id-

iosyncratic technological shocks cancel out in aggregation and the aggregate

variance declines as fast as 1/N (Dupor (1999)). In contrast, in this model,

the variance of g1 declines no faster than 1/
√
N . This again opens up a theo-

retical possibility that indivisible investment at the micro level contributes to

sizable macro-level fluctuations when the number of firms is large but finite.

Table 2 shows the standard deviations in the numerical simulations of

equilibrium paths when the number of firms is 100000, about one-third of

the benchmark case. Standard deviations exhibit no discernible increase

from the benchmark. Thus, in the calibrated range of parameter values,

the number of firms does not have a significant impact on the magnitude of

aggregate fluctuations.

4 Discussion

4.1 Model assumptions and information content of gap

distribution

Assumptions important for aggregate fluctuations are capital indivisibility

and predetermined prices of goods. If indivisibility log λ is 0, Proposition 5
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states that the asymptotic aggregate variance is 0. This is because, under

continuous adjustments, capital keeps track of idiosyncratic productivity,

which cancels out across firms. The predetermined price is important for

the criticality condition φ = 1. Under flexible prices of goods, an increase

in aggregate investment raises factor prices and dampens the investment

demand as in Thomas (2002). In contrast, under fixed prices, an increase

in aggregate investment causes firms to hire more, which raises consumption

and prevents interest rate increases.

In the model, I also assume that firms use the stationary gap distribution

in order to form expectations. In deciding kt+1, firms observeKt+1 andXt but

not Xt+1. To form expectations on wt+1 and Rt+1, firms assume that future

gap distributions are uniformly distributed. This assumption is necessary to

render the model tractable. Simulated gap distributions show little deviation

from the uniform distribution. In what follows, I further examine whether

using the exact gap distribution significantly improves firms’ prediction power

over future prices.

The exact gap distribution si,t enters the equilibrium system (17, 18, 19)

in summations directly and in information sets of conditional expectations.

The former effect is negligible. The difference between the summations in

(19) when evaluated by exact gaps and by the integral over the stationary

distribution is less than 10−13 percent in the benchmark simulation. As

N becomes larger, this error becomes even smaller. The latter effect by

the gap distribution in information sets might be more potent. However,

fully implementing this state variable raises the curse of dimensionality in

numerical computation. Krusell and Smith, Jr. (1998) deal with this by
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transforming the distribution equivalently to an infinite vector of moments

and then approximating it by a finite vector. In this model, I approximate

the gap distribution by its stationary counterpart in a continuum economy.

In what follows, I check that the gap distribution does not have significantly

higher prediction power for future prices than the stationary distribution.

For each period t, the expectation for investment threshold s∗i,t is formed

as (15). The expected investment is the integral of indivisible investments

of firms with si,t less than s∗i,t. Actual investment may differ from the ex-

pected value due to two factors: the exact values of si,t and the realizations

of idiosyncratic productivities. If the exact si,t is known for some future pe-

riod t and no productivity shocks are present, then the distribution of si,t

should have prediction power for the difference between the expected and

realized investments. This prediction power is weakened when the idiosyn-

cratic shocks wash out the information si,t has. To see this, I conduct the

following experiment. In a variation of the benchmark simulation, I com-

pute the equilibrium path selected by mechanism 2. I additionally compute

log Γ(Ke
t+1)− logKe

t+1 for the case where productivity shocks in t+ 1 are set

at 0. This log-difference and logKt+1 − logKe
t+1 turn out to exhibit no cor-

relation either in terms of values or signs. This implies that exact si,t alone

cannot even predict the sign of expectation error because of the uncertain

productivities. This experiment confirms that the exact gap distribution has

little prediction power for future prices even at the small standard deviation

(0.05%) of idiosyncratic productivity shocks, because aggregate investments

respond to the small perturbations in productivity or capital gap non-linearly

and quite sensitively.
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4.2 Heterogeneity, criticality, and power law

In the previous section, the fluctuation distribution is derived under the as-

sumption of homogeneous capital indivisibility. However, empirical studies

attest large variations in the lumpiness in investment-capital ratio across

firms (Doms and Dunne (1998); Cooper, Haltiwanger, and Power (1999)).

In Appendix G, I show that the power-law tail distribution with the same

exponent is obtained even in the general setup where the indivisibility and

depreciation rates are heterogeneous across firms. The robustness of the ex-

ponent 0.5 results from the fact that any branching process with martingale

property brings out the power-law tail with exponent 0.5 for the cumula-

tive population size (Harris, 1989, p.32).56 When random productivity is

incorporated, it is possible to characterize the fluctuation in the form of a

moment generating function (Nirei (2006)), but it becomes difficult to derive

the distribution function analytically.

The possibility of a power-law distribution of sectoral propagation was

first pointed out by Bak, Chen, Scheinkman, and Woodford (1993). In a

simple supply chain model, they obtained a power-law distribution of aggre-

gate fluctuations with exponent 1/3. The difference in exponent arises from

5The distribution of population size in branching processes is closely related to the

distribution of the first return time of a random walk, which has the same power-law

exponent 0.5.
6The robustness reflects the fact that in various models of connected non-linear dy-

namics, the perfect complementarity φ = 1 appears as a condition for idiosyncratic shocks

to have aggregate consequences through power-law distributions. For example, in a cele-

brated theorem by Erdős and Rényi, the condition φ = 1 corresponds to the critical point

for the emergence of a “giant cluster” in a random graph (Bollobás, 1998, p.240).
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the topology of the model network. They assumed a two-dimensional lattice

network in which two avalanches starting from neighboring sites can overlap.

This leads to a longer chain reaction and a flatter power-law tail. In contrast,

the present model features a market equilibrium that is essentially dimen-

sionless in terms of the firms’ network. The market model corresponds to an

infinite-dimension case of the lattice models, which yields the cluster-volume

exponent 0.5 (Grimmett, 1999, p.256).

The power-law tail is useful in understanding the mechanism for aggre-

gate fluctuations that arise from idiosyncratic shocks. It allows a slowly-

aggregating mechanism such as in the case of equilibrium selection 1 to gen-

erate the magnitude of fluctuations comparable to business cycles with a

realistically large number of firms. However, the power law is not easily

testable in the business cycles data. M |m1 = 1, the number of firms induced

to invest by a single investing firm, is not observable. The number of invest-

ing firms M is observable, and follows a mixture of the power law for M |m1

and the normal distribution for m1. In simulations, the unconditional distri-

bution of M is best fitted by a Laplace-like distribution with exponentially

declining tails. Thus, the aggregate fluctuation distribution reflects some

traits of the non-Gaussian distribution but not the pure power law.

4.3 Fragile equilibria, coordination failure, and fiscal

policy implications

I argued that perfect complementarity with discrete choice generates aggre-

gate fluctuations of a locally unique equilibrium in a globally indeterminate

environment. This can be translated as jumpy dynamics of a ball on a flat,
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rugged landscape in the language of “fragile equilibria” models by Blanchard

and Summers (1988). In that context, the contribution of this paper is to

derive the distribution of the jumps in a standard business cycle model.

This model also features a coordination failure in the sense of Cooper and

John (1988). The coordination failure occurs in the capital market where

households delegate investment decisions to firms. Since households only in-

struct discount factors to firms while firms face non-convexity (indivisibility),

inefficient allocations may arise in equilibrium. This inefficiency could be ar-

bitraged by, for example, a financial intermediary who finances investments

of multiple firms and delivers smoother dividends to households. Such inter-

mediaries are abstracted from the model. This setup can be justified when

it is costly to collect exact information on firms’ capital positions. In the

model economy, none of the agents possesses such an informational advan-

tage, and further, the possible gain of arbitrage by smoothing consumption

is quantitatively very small.

As a predetermined pricing model that entails quantity adjustments upon

demand shocks, this model has an implication for active fiscal policies. It

is possible to include government purchase in the model and show that the

fiscal stimulus generates a multiplier effect in the same mechanism as an in-

vestment demand shock propagating to consumption and output. However,

implementing an active demand control for stabilization would require the

government to have information as much as the potential financial arbitrager

discussed above, and would be impractical in this model. Moreover, poten-

tial welfare gains by such stabilization policy would be as small as the profits

of the potential financial arbitrager in the current model with representative
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households. To fruitfully discuss the stabilization policy, the model needs

to incorporate heterogeneous households, government’s capability to identify

investment shocks, and realistic labor and financial markets. Moreover, the

current model does not generate strong enough autocorrelations in key vari-

ables. Extensions of this model toward a full account of business cycles and

stabilization policies are left for future research.

5 Conclusion

This paper characterizes the aggregate fluctuations arising from the comple-

mentarity of indivisible investments at the firm level. Analytically, I propose

to evaluate the fluctuation of aggregate investment along the evolution of het-

erogeneous capital as if it is a stochastic fluctuation whose randomness arises

from the stochastic configuration of relative capital levels. For each config-

uration, the equilibrium aggregate investment is determined as a convergent

point of a fictitious best-response dynamics of firms’ investment decisions.

The best-response dynamics can be embedded in a branching process with a

probability measure of the stochastic configuration of relative capital. This

enables us to derive the distribution function of the aggregate fluctuation in

a closed form.

The fluctuation in the number of investing firms is shown to follow a

power-law distribution with an exponential truncation at the tail. The trun-

cation speed is determined by the degree of strategic complementarity among

firms. In the model of predetermined price setting with constant returns to

scale technology, the distribution becomes a pure power law, and the standard
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deviation of the growth rate is shown to be strictly positive even when there

are an infinite number of firms. The limiting standard deviation is shown to

be almost proportional to the indivisibility of firm-level investments.

I incorporate the above fluctuation mechanism in a dynamic general equi-

librium model and numerically compute equilibrium paths without making

the randomness assumption of the capital configuration. Under plausible

parameter values, the equilibrium path is shown to exhibit aggregate fluctu-

ations comparable to business cycles in magnitude and correlation structure.

The simulation also confirms the validity of the analysis above that utilizes

the assumptions of randomness and uniformity of the capital configuration.

A Proof of Proposition 1

The right-hand side of gap dynamics in (10) is written as a modulo 1 of

log(1− δ) + log(a0
tKt)− log(a0

t+1Kt+1) + ρ
α(1−ρ)

(log ai,t − log ai,t+1)

log λi
+si,t+1,

where

a0
t ≡

(∫
a

ρ
α(1−ρ)
i,t

(
λρi − 1

λi − 1

) ρ
1−ρ

λ
ρsi,t
i di

)−1
ρ

. (29)

si,t is obtained by applying a modulo 1 operation to the sum of t log(1 −

δ)/ log λi, (log(a0
0K0)− log(a0

tKt) + (ρ/(α(1− ρ)))(log ai,0 − log ai,t))/ log λi,

and si,0 + 1. When 1/ log λi has a well-defined density, the first term, taken

modulo 1, converges in distribution to a unit uniform random variable as

t → ∞, and its sum with an absolutely continuous random variable, taken

modulo 1, also converges to the unit uniform distribution (Engel, 1992, pp.28-

29). Since the second and third terms also have densities, they are absolutely
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continuous and satisfy the condition of this theorem.

B Proof of Lemma 1

Let Hu, u = 2, 3, . . . , T denote the set of firms that adjust capital in step u.

Assume that the size of Hu is finite with probability one when N →∞, which

I verify later. I consider the case m1 > 0 for the proofs of Lemmas 1 and 2

and Proposition 4 without loss of generality. Thus, log ki,u = log ki,u−1 +log λ

for i ∈ Hu.

The Taylor series expansion of N(logKu+1−logKu) around (log ku)i∈Hu+1

is calculated as follows. The first derivative is ∂N logKu/∂ log ki,u = (ki,u/Ku)
ρ.

Thus, ∂Ku/∂ki,u is of order 1/N .7 The second and higher derivatives with re-

spect to own log ki,u are ∂n(ki,u/Ku)
ρ/∂ log kni,u = ρn(ki,u/Ku)

ρ+O(∂Ku/∂ki,u)

for n = 1, 2, . . .. The second cross derivatives, ∂2 logKu/(∂ log ki,u∂ log kj,u),

are of order ∂Ku/∂kj,u, and thus, O(1/N). Similarly, the higher-order cross

derivative terms with respect to the capital of h distinct firms in Hu+1 are

of order 1/Nh−1. Since Hu+1 is finite, the n-th derivative of N logKu has a

finite number of cross derivative terms for any finite n. Hence, the Taylor

series expansion of N(logKu+1 − logKu) yields

∞∑
n=1

∑
i∈Hu+1

(
ki,u
Ku

)ρ
ρn−1(log λ)n

n!
+O(1/N) =

λρ − 1

ρ

∑
i∈Hu+1

(
ki,u
Ku

)ρ
+O(1/N),

where I used λρ = λ0 +
∑∞

n=1(dnλρ/dρn)|ρ=0(ρn/n!). Utilizing ki,u = k∗uλ
si,u ,

I obtain that
∑

i∈Hu+1
(ki,u/Ku)

ρ = (
∑

i∈Hu+1
λsi,uρ)/(

∑N
i=1 λ

si,uρ/N). The

7By taking yN as of order xN , or interchangeably, yN = O(xN ), I mean that yN/xN

converges to a finite number as N →∞.
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denominator converges to E[λsi,uρ] as N → ∞ almost surely by the law of

large numbers, and I have E[λsi,uρ] =
∫ 1

0
λsi,uρdsi,u = (λρ − 1)/(ρ log λ). The

numerator,
∑

i∈Hu+1
λsi,uρ, converges to mu+1 for every event when Hu+1 is

finite, because si,u is smaller than φ(logKu − logKu−1)/ log λ for any i ∈

Hu+1, and thus, λsi,u converges to 1 as N →∞. Thus, I obtain the lemma.

C Proof of Lemma 2

The conditional probability for firm i to invest in u = 2, 3, . . . , T is

Pr(i ∈ Hu | i /∈ ∪v=2,3,...,u−1Hv) =
φ(logKu − logKu−1)/ log λ

1− φ(logKu−1 − logK0)/ log λ
. (30)

Thus, mu follows a binomial distribution with population N −
∑u−1

v=2 mv and

probability (30). The mean of mu converges to φmu−1 as N →∞, by using

Lemma 1. Then, the binomial distribution of mu converges to a Poisson dis-

tribution with mean φmu−1 for u = 2, 3, . . . , T . Since a Poisson distribution

is infinitely divisible, the Poisson variable with mean φmu−1 is equivalent

to a mu−1-times convolution of a Poisson variable with mean φ. Thus, the

process mu for u = 2, 3, . . . , T is a branching process with a Poisson random

variable with mean φ, where m2 follows a Poisson distribution with mean

φm1. Note that m1 is not included in the branching process because it is not

necessarily an integer.

D Proof of Proposition 4

The initial state of the best-response dynamics (27, 28) is constructed as

follows. For the case φ < 1, a gap profile (si,0)i is drawn from a jointly
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uniform distribution, and a capital profile is constructed by ki,−1 = λsi,0Kφ
−1

and K−1 = (
∑N

i=1 k
ρ
i,−1/N)1/ρ. For φ = 1, the last equation determines

b−1 and B−1 given the realized gaps, and K−1 is determined by B−1 in the

expectation system. Then, the initial state of the tatonnement is constructed

by ki,0 = (1 − δ)ki,−1 and by setting K0 at Ke
0 that is determined by the

expectation system given K−1. In the notations for tatonnement, logKT −

logK−1 corresponds to the capital growth rate in the model logKt+1−logKt.

I first derive the asymptotic distribution of M conditional on m1. It is

known that the accumulated sum M =
∑T

u=2mu of the Poisson branching

process conditional on m2 follows an infinitely divisible distribution called

the Borel-Tanner distribution (Kingman, 1993, p.68):

Pr(M = w | m2) = (m2/w)e−φw(φw)w−m2/(w −m2)! (31)

for w = m2,m2 + 1, . . .. By combining (31) with m2 that follows the Poisson

distribution with mean φm1, and using the binomial theorem in the sum-

mation over m2, I obtain (25).8 Furthermore, the approximation in (26) is

obtained by applying Stirling’s formula w! ∼
√

2πe−www+0.5 and the fact

that (1 +m1/w)w−1 → em1 as w →∞.

Next, I derive the asymptotic normal distribution of m1/
√
N . I split

m1/
√
N into three terms as log Γ(K0)−log(

∑N
i=1((1−δ)ki,−1)ρ/N)1/ρ, log(

∑N
i=1((1−

δ)ki,−1)ρ/N)1/ρ− logK−1, and logK−1− logK0, all multiplied by
√
N/ log λ.

The second term represents the depreciation and is equal to (
√
N/ log λ) log(1−

δ). Thus, the sum of the second and third terms yields −
√
N/q. The first

term represents the first-step adjustments induced directly by depreciation.

Define H1 as the set of firms that adjust in the first step. Using ki,0 = λsi,0k∗0,

8See the Technical Appendix for a detailed derivation.
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I obtain K1 = (1 − δ)k∗0((λρ − 1)
∑

i∈H1
λsi,0ρ/N +

∑N
i=1 λ

si,0ρ/N)1/ρ and

(
∑N

i=1((1 − δ)ki,0)ρ/N)1/ρ = (1 − δ)k∗0(
∑N

i=1 λ
si,0ρ/N)1/ρ. Hence, the first

term of m1/
√
N becomes

√
N

ρ log λ
log

(
(λρ − 1)

∑
i∈H1

λsi,0ρ/N∑N
i=1 λ

si,0ρ/N
+ 1

)
. (32)

By assumption, si,0 is distributed uniformly. Thus, the denominator
∑N

i=1 λ
si,0ρ/N

in (32) converges to
∫ 1

0
λsi,0ρdsi,0 = (λρ−1)/(ρ log λ) with probability one by

the law of large numbers. Let x denote the numerator: x ≡
∑

i∈H1
λsi,0ρ/N .

Note that i ∈ H1 is equivalent to 0 ≤ si,0 < 1/q. Then, the asymptotic mean

of x is x0 =
∫ 1/q

0
λsi,0ρdsi,0 = (λρ/q − 1)/(ρ log λ), and by the central limit

theorem,
√
N(x − x0) converges in distribution to the normal distribution

with mean zero and variance∫ 1/q

0

(λsi,0ρ)2 dsi,0 −
(
λρ/q − 1

ρ log λ

)2

=
λ2ρ/q − 1

2ρ log λ
−
(
λρ/q − 1

ρ log λ

)2

. (33)

I regard (32) as a function F of x. By the delta method, I obtain that F (x)

asymptotically follows the normal distribution with mean F (x0) and variance

F ′(x0)2Avar(x). F (x0) is calculated as

√
N

ρ log λ
log

(
(λρ − 1)(λρ/q − 1)/(ρ log λ)

(λρ − 1)/(ρ log λ)
+ 1

)
=

√
N

q
. (34)

This cancels out with the second and third terms of m1/
√
N . F ′(x0)2Avar(x)

is calculated as σ2
1 in the proposition. Then, m1/

√
N asymptotically follows

a normal distribution with mean zero and variance σ2
1. This completes the

proof.
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E Proof of Proposition 5

Lemma 1 implies that (logK2 − logKe
0)/ log λ asymptotes to (m1 + M)/N ,

which I focus on here. Its unconditional variance Var ((m1 +M)/N) is de-

composed as follows:

E

[
Var

(
M

N
| m1

)]
+ Var

(
m1

N
+ E

[
M

N
| m1

])
(35)

= E

[
E

[
Var

(
M

N
| m1,m2

)
| m1

]
+ Var

(
E

[
M

N
| m1,m2

]
| m1

)]
+ Var

(
m1

N
+ E

[
E

[
M

N
| m1,m2

]
| m1

])
.

mu asymptotically follows a martingale branching process when N → ∞

and φ = 1. Thus, |M | conditional on |m2| is asymptotically equivalent to

the |m2|-times convolution of M conditional on m2 = 1. Using these facts, I

obtain that

Var(M/N | m1,m2) ∼ |m2|Var(M/N | m2 = 1), (36)

E[E[M/N | m1,m2] | m1] ∼ E[m2 | m1]E[M/N | m2 = 1] (37)

∼ m1E[M/N | m2 = 1].

Further, |m2| conditional on m1 asymptotically follows a Poisson distribu-

tion with mean |m1|, and the unconditional distribution of m2 is symmetric.

Since m1/
√
N asymptotically follows N(0, σ2

1) by Proposition 4, I can use

45



the formula E[|m1|/
√
N ]→ σ1

√
2/π. Applying these, I obtain

Var

(
m1 +M

N

)
(38)

∼ E

[
E [|m2| | m1] Var

(
M

N
| m2 = 1

)
+ Var(m2 | m1)E

[
M

N
| m2 = 1

]2
]

+ Var

(
m1

N
+ E

[
M

N
| m2 = 1

]
E[m2 | m1]

)
∼ (σ1

√
2/π)E

[
M2

N1.5
| m2 = 1

]
+ σ2

1

(
1√
N

+ E

[
M√
N
| m2 = 1

])2

.

Next, I calculate limN→∞ E[M/
√
N | m2 = 1]. By Proposition 4, the

probability of M = N declines as N−1.5 when φ = 1. Since N · N−1.5

converges to 0, the conditional expectation of M can be evaluated by using

the asymptotic probability function (31) when φ = 1:

Pr(M = w | m2 = 1) = e−www−1/w!. (39)

By using inequality (Feller, 1957, p.52)

√
2πww+0.5e−w+1/(12w+1) < w! <

√
2πww+0.5e−w+1/(12w), (40)

the upper and lower bounds of the asymptotic mean of M/
√
N are computed

as follows:9

N∑
w=1

e−www/(w!
√
N) <

∫ N

0

w−0.5dw/
√

2πN →
√

2/π, (41)

N∑
w=1

e−www/(w!
√
N) >

∫ N+1

1

e−1/(12w)w−0.5dw/
√

2πN →
√

2/π. (42)

Hence, E[M/
√
N | m2 = 1,W ≤ N ]→

√
2/π. Similarly, I obtain

E[M2/N1.5 | m2 = 1]→ 1/(1.5
√

2π). (43)

9See the Technical Appendix for a detailed derivation.
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Collecting the results, I obtain Var((m+M)/N)→ (2/π)(σ1+1/3)σ1. Hence,

the capital growth rate has an asymptotic variance: (log λ)2(2/π)(σ1+1/3)σ1.

F Proof of Proposition 6

Consider the case Γ(Ke
0) > Ke

0 depicted in Figure 1. K1 is the fixed point of

Γ on the opposite side of Ke
0 from K2. There exists a point between K1 and

Ke
0 at which Γ crosses the 45 degree line from below. By applying Proposition

4, the number of adjusting firms between the point and K1 follows the power

law with exponent 0.5 if φ = 1. Then, the tail distribution of | logK1−logKe
0 |

cannot decay faster than the power function with exponent 0.5.

By the selection rule, |g1| = min{| logK1 − logKe
0 |, | logK2 − logKe

0 |}.

Since the two terms in the minimization operator are independent condi-

tional on m1, I have that Pr(|g1| > g | m1) = Pr(| logK1 − logKe
0 | > g |

m1) Pr(| logK2 − logKe
0 | > g | m1). Thus, g1 conditional on m1 has a tail

that cannot decay faster than the power function with exponent 0.5+0.5 = 1.

At the power exponent 1, the variance of g1 conditional on m1 decreases as∫ N
x2x−2dx/N2 ∼ 1/N . Since the mean of |m1| increases as

√
N , proceeding

as in the proof of Proposition 5, I obtain that the variance of g1 decreases

as 1/
√
N . If the tail distribution of g1 conditional on m1 decays more slowly

than the power law with exponent 1, the variance of g1 also decreases more

slowly than 1/
√
N .
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G Heterogeneous indivisibility

In this section, I extend the fluctuation results to the case where both the

indivisibility and depreciation rates are heterogeneous across firms. Suppose

that there are a finite L types of firms with parameter values δi = δ(l) and

λi = λ(l) for l = 1, 2, . . . , L. Each type of firm is drawn with probability

σ(l), where
∑L

l=1 σ(l) = 1. The lower bound of the inaction band becomes

heterogeneous as in (8): k∗i = biK
φ. I maintain that productivity ai,t is

homogeneous across i. Define log λ̌i ≡ bρi (λ
ρ
i − 1)/(ρE[bρiλ

si,1ρ
i ]). Then, I

obtain the following proposition.

Proposition 7 Suppose that λi and δi vary across firms, and are randomly

drawn from a finite set. Then, M conditional on m1 = 1 follows the same

tail distribution as (26):

Pr(|M | = w | m1 = 1) = C0(eφ̌−1/φ̌)−ww−1.5 (44)

for a large integer w, where φ̌ ≡ φE[log λ̌i/ log λi] and C0 are constant. The

asymptotic variance of the fraction of firms that adjust, (m1 + M)/N , is

strictly positive when N →∞ if φ̌ = 1.

Proof: Let N(l) denote the total number of firms of type l and mu(l)

denote the number of firms of type l that adjust capital in step u.
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First, I show the counterpart of Lemma 1 as follows:

N(logKu+1 − logKu) =
∞∑
n=1

∑
i∈Hu+1

(
ki,u
Ku

)ρ
ρn−1(log λi)

n

n!
+O(1/N) (45)

=

∑
i∈Hu+1

bρiλ
si,uρ
i

∑∞
n=1 ρ

n−1(log λi)
n/n!∑

i b
ρ
iλ

si,uρ
i /N

+O(1/N)

→
∑

i∈Hu+1
bρi (λ

ρ
i − 1)/ρ

E[bρiλ
si,uρ
i ]

.

Define Zu+1 as the right-hand side of (45). It has mean mu+1E[log λ̌i].

I then show that (mu)u follows a branching process. Let F1 denote the

cumulative distribution function of si,1. I then have

Pr(i ∈ Hu, λi = λ(l)|i /∈ ∪v=2,3,...,u−1Hv) (46)

= σ(l)
F1(φ(logKu − logK0)/ log λ(l))− F1(φ(logKu−1 − logK0)/ log λ(l))

1− F1(φ(logKu−1 − logK0)/ log λ(l))
.

Thus, mu(l) follows a binomial distribution with probability as stated above

and population N(l)−
∑u−1

v=2 mv(l). Considering that mv’s, v = 2, 3, . . . , u−1

are finite with probability one, I obtain the asymptotic mean of the binomial

as σ(l)φZu/ log λ(l). Thus, mu(l) asymptotically follows a Poisson distri-

bution with this mean. Hence, mu =
∑L

l=1mu(l) asymptotically follows a

Poisson distribution with mean φE[log λ̌i/ log λi]mu−1 = φ̌mu−1.

The vector of Poisson random variables (mu(l))l conditional on its summu

follows a multinomial distribution with probability vector ((σ(l)/ log λ(l))/E[1/ log λi])l

and population mu (Kingman, 1993, page 7). Zu is the sum of a multinomial

vector with weights b(l)ρ(λ(l)ρ − 1)/(ρE[bρiλ
si,uρ
i ]). Thus, Zu conditional on

mu is equivalent to a mu-times convolution of a random variable. Then, mu+1

conditional on mu asymptotically follows a compound Poisson distribution.

Since a compound Poisson distribution is infinitely divisible, (mu)u follows a
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branching process in which each firm in step u bears children in step u + 1

whose number follows the compound Poisson distribution that has mean φ̌.

By the theorem by Otter, a cumulative sum of a branching process follows

the distribution as in Proposition (Harris, 1989, p.32). Finally, the process

(mu) is finite with probability 1 if φ̌ ≤ 1. This completes the proof.

References

Acemoglu, D., V. M. Carvalho, A. Ozdaglar, and A. Tahbaz-

Salehi (2012): “The network origins of aggregate fluctuations,” Econo-

metrica, 80, 1977–2016.

Bak, P., K. Chen, J. Scheinkman, and M. Woodford (1993): “Ag-

gregate fluctuations from independent sectoral shocks: Self-organized crit-

icality in a model of production and inventory dynamics,” Ricerche Eco-

nomiche, 47, 3–30.

Blanchard, O. J., and N. Kiyotaki (1987): “Monopolistic competition

and the effects of aggregate demand,” American Economic Review, 77,

647–666.

Blanchard, O. J., and L. H. Summers (1988): “Beyond the natural rate

hypothesis,” American Economic Review, 78, 182–187.

Bollobás, B. (1998): Modern Graph Theory. Springer.

Brock, W. A., and S. N. Durlauf (2001): “Interaction-based models,”

50



in Handbook of Econometrics, ed. by J. J. Heckman, and E. Leamer. North-

Holland.

Brock, W. A., and C. H. Hommes (1997): “A rational route to random-

ness,” Econometrica, 65(5), 1059–1095.

Caballero, R. J., and E. M. R. A. Engel (1991): “Dynamic (S,s)

economies,” Econometrica, 59, 1659–1686.

Caplin, A. S., and D. F. Spulber (1987): “Menu cost and the neutrality

of money,” Quarterly Journal of Economics, 102, 703–726.

Cooper, R. (1994): “Equilibrium selection in imperfectly competitive

economies with multiple equilibria,” Economic Journal, 104, 1106–1122.

Cooper, R., J. Haltiwanger, and L. Power (1999): “Machine replace-

ment and the business cycles: Lumps and bumps,” American Economic

Review, 89, 921–946.

Cooper, R., and A. John (1988): “Coordinating coordination failures in

Keynesian models,” Quarterly Journal of Economics, 103, 441–463.

Doms, M., and T. Dunne (1998): “Capital adjustment patterns in man-

ufacturing plants,” Review of Economic Dynamics, 1, 409–429.

Dupor, B. (1999): “Aggregation and irrelevance in multi-sector models,”

Journal of Monetary Economics, 43, 391–409.

Durlauf, S. N. (1993): “Nonergodic economic growth,” Review of Eco-

nomic Studies, 60, 349–366.

51



Ellison, G., and E. L. Glaeser (1997): “Geographic concentration in

U.S. manufacturing industries: A dartboard approach,” Journal of Politi-

cal Economy, 105, 889–927.

Engel, E. M. R. A. (1992): A Road to Randomness in Physical Systems.

Springer-Verlag, NY.

Feller, W. (1957): An Introduction to Probability Theory and Its Applica-

tions, vol. I. Wiley, NY, second edn.

Fisher, J. D. M. (2006): “The dynamic effects of neutral and investment-

specific technology shocks,” Journal of Political Economy, 114, 413–451.

Gabaix, X. (2011): “The granular origins of aggregate fluctuations,” Econo-

metrica, 79, 733–772.
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