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Abstract

This paper presents a model of endogenous fluctuations of investment and output

at the business cycles frequencies. Aggregate investments fluctuate endogenously due

to the strategic complementarity of micro-level lumpy investments. The investment

fluctuations are transmitted to the output via variable utilization of capital. Simula-

tions show that there is a range of parameter values under which the model economy

exhibits a large magnitude of fluctuations and comovements in investment and output.
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1 Introduction

This paper presents a real dynamic general equilibrium model without exogenous

shocks and with micro-level non-linearity, and shows that the equilibrium path can

exhibit endogenous fluctuations of investment, output, and consumption at the busi-

ness cycles frequencies.

This research is motivated by the fact that the standard real business cycle models

need to assume large and persistent exogenous productivity shocks. It is still con-

tentious whether such shocks are large and persistent enough as the theory requires

(Cochrane (1994), Cogley and Nason (1995)). Various modifications are proposed to

amend this problem: propagation mechanisms can render the assumed magnitude of

exogenous shocks small (as discussed in King and Rebelo (1999)), and frictions can

generate the persistent dynamics that resemble business cycles (for example, Chris-

tiano, Eichenbaum, and Evans (2005)). This paper presents an alternative approach

for the amplification mechanism. We claim that the strategic complementarity of firm-

level lumpy investments can generate aggregate fluctuations even without exogenous

shocks.

In our model, the driving force of the fluctuation is the natural constant depreciation

of capital. It is assumed that the investment is subject to discreteness constraint.

Namely, each firm cannot adjust the capital level continuously, and it faces a binary

decision whether it invests in a lumpy manner or not at all. If there were a continuum

of firms, the aggregate dynamics would have a steady state level of capital, and the

lumpiness would be “washed out”. Namely, the fraction of firms that engage in lumpy

investments times the lumpy investment would be equal to the amount of capital

depreciation. In an economy with large but finite number of firms, there will be

a gap between the total investment and the depreciated capital. The law of large

numbers tells us that such a gap is vanishingly small for a large number of firms. This
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paper shows otherwise under certain environments where the small gap in investment is

amplified by a strong propagation mechanism. We focus on the propagation that arises

from the strategic complementarity of firms’ lumpy investments in a monopolistically

competitive economy. In principle, such a propagation mechanism can be mitigated

by the adjustments of flexible factor prices (Thomas (2002)). We quantitatively show

that substantial fluctuations can arise in a version of variable capital utilization model

(Nakajima (2005)) for a range of parameter values.

The model has three ingredients that deviate from the benchmark competitive

general equilibrium model: lumpy investments, monopolistic firms, and flexible but

predetermined real interest rates. An explanation is due for the last point. The equi-

librium condition of our model boils down to a non-linear dynamical system in very

high dimensions – as many dimensions as the number of firms. Such a system gen-

erates deterministic complex dynamics for the aggregate variables. Even though the

dynamics is deterministic, it is impossible to compute the exact path for many periods

in future, because a small rounding error leads to a very different path of the capital

profile. Thus, the model agents need to adopt some kind of computable forecasting

system. We assume that the interest to be paid in period t+1 is determined in period t

based on the forecasting system the agents employ. In addition to those specifications,

we assume that a fraction of households follow a rule-of-thumb consumption/labor

decision. This is to enhance the match with the fluctuations patterns of consumption.

We provide an analytical explanation as to why the micro-level lumpy investments

can generate large endogenous fluctuations. The propagation effect of a firm’s lumpy

investment to the other firms depends sensitively on the distribution of the firms within

the inaction band. It is clear that an investment boom occurs if many firms happen

to be located near the investment threshold. It is not likely that the density near the

threshold fluctuates very much though, because the cross-section distribution within

the inaction band tends to converge to a stationary distribution quickly. We should
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note, however, that a slight difference in the density is enough to cause a chain-reaction

of lumpy investments. The process is similar to a domino game. Suppose that a tile

that is closest to the threshold falls. If the tile second closest to the threshold stands

near enough to the first tile, it will fall, too. The second tile may similarly cause the

third tile to fall, and the familiar domino effect ensues. The falling tiles stop where two

adjacent tiles stand apart a little bit farther than the hight of the tile. Thus, a slight

perturbation on the standing point is sufficient to cause a dramatic difference in the

length of falling times. We will analyze the domino-like effect in our equilibrium model

by investigating a fictitious tatonnement process that characterizes our equilibrium.

The next section introduces the model and equilibrium. Section 3 reports the

numerical results. We discuss the endogenous fluctuation mechanism in Section 4.

Section 5 concludes.

2 Model

2.1 Firm

The production sector of the model draws on Nakajima (2005). There are N firms,

each of which produces a differentiated product denoted by j = 1, 2, . . . , N . Firm j is

a monopolistic producer of good j. Firm j has a within-period production function:

yj,t = Atuj,tk
θ
j,t (1)

where uj,t is the capacity utilization rate that j can adjust within period t, and kj,t is

the capital that is predetermined at the beginning of the period t. At is the aggregate

productivity that is common across firms and grows at constant rate γA.
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The capacity utilization rate uj,t is determined by the labor input hj,t as follows:

uj,t =
hj,t − h

h̄− h
(2)

This term is interpreted in Nakajima (2005) as follows. h̄ represents the hours worked

in a day when the production facility is in operation. h is the hours per day that

are needed to maintain the facility when it is out of operation. uj,t is the fraction

of time spent for operation in period t. Thus, the total labor input satisfies hj,t =

uj,th̄ + (1 − uj,t)h. Solving for uj,t, we obtain (2). The term (1 − uj,t)h is the fixed

cost of the production. Due to the fixed cost, the production technology exhibits

some increasing returns. The production function can be expressed as yj,t = (At/(h̄−

h))(hj,t−h)1−θ(uj,tkj,t)θ. Thus, this specification is consistent with the finding of Basu

and Fernald (1995) when h is small enough.

Firm j faces a demand function for own good:

yj,t = p−η
j,t Yt (3)

where Yt = (
∑N

j=1 y
(η−1)/η
j,t /N)η/(η−1) is the Dixit-Stiglitz index for aggregate product.

The aggregate price index Pt = (
∑N

j=1 p1−η
j,t /N)1/(1−η) is normalized to one. We assume

η > 1, θ < 1, and θ(η − 1) < 1.

Finally, firm j’s investment is restricted to a discrete choice, where the firm can

choose either no gross investment, an upward jump, or a downward jump of capital by

a lumpiness factor λj :

kj,t+1 ∈ {λj(1− δ)kj,t, (1− δ)kj,t, (1− δ)kj,t/λj} (4)

where δ ∈ (0, 1) is the capital depreciation rate. Such a discrete choice is observed

when firms purchase big equipments or adjust the number of plants. The investment
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is denoted by xj,t = kj,t+1 − (1 − δ)kj,t. We assume λj(1 − δ) > 1. The investment is

a Dixit-Stiglitz composite good, xj,t = (
∑N

i=1 x
(η−1)/η
i,j,t /N)η/(η−1).

Firms are owned by forward-looking households and instructed to maximize the

discounted sum of future profits by applying a discount factor ∆t. Thus firm j’s

objective is:

max
{yj,t,pj,t,hj,t,uj,t,kj,t+1}∞t=0

∞∑
t=0

∆t [pj,tyj,t − wthj,t − kj,t+1 + (1− δ)kj,t] (5)

subject to production function (1,2), demand function (3), and discreteness constraint

(4).

Firm’s first order condition with respect to hj,t leads to:

awy
−1/η
j,t Y

1/η
t Atk

θ
j,t = wt (6)

where

aw ≡ (1− 1/η)/(h̄− h). (7)

From (6), we obtain a goods supply function:

yj,t = (awAtk
θ
j,t/wt)ηYt (8)

Plugging into the production function (1,2), we obtain a labor demand function:

hj,t = h + (awAtk
θ
j,t)

η−1(1− 1/η)Yt/wη
t (9)

Then the firm’s maximization problem reduces to:

max
{kj,t+1}∞t=0

∞∑
t=0

∆t

[
(1/η)(awAtk

θ
j,t/wt)η−1Yt − wth− kj,t+1 + (1− δ)kj,t

]
(10)
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subject to the discreteness constraint (4).

The part of the objective function that is relevant to the choice of kj,t+1 is:

π(kj,t+1) ≡ ∆t+1

[
(1/η)(awAt+1k

θ
j,t+1/wt+1)η−1Yt+1 + (1− δ)kj,t+1

]
−∆tkj,t+1. (11)

The function π is concave by the assumption θ(η− 1) < 1. Thus, the optimal strategy

of firm j is characterized as an (S,s)-type threshold rule in which capital is not adjusted

in t + 1 if the depreciated capital (1− δ)kt falls in an inaction region (k∗j,t+1, λjk
∗
j,t+1],

whereas capital is adjusted upward by λj in the region below k∗j,t+1 and downward

by 1/λj in the region above λjk
∗
j,t+1. At the lower threshold k∗j,t+1, the firm must

be indifferent between an inaction and an upward adjustment. Note that, if the firm

postpones the adjustment by one period and if the future adjustment plan is unchanged,

then the capital path coincides with the original path from one period ahead. Thus,

the firm is indifferent only if π is unchanged by the adjustment for the current period.

Hence k∗j,t+1 is determined by π(k∗j,t+1) = π(λjk
∗
j,t+1). This is solved as follows:

k∗j,t+1 = aj

(
(1/η)aη−1

w Aη−1
t+1 w

−(η−1)
t+1 (Rt+1 − 1 + δ)−1Yt+1

)1/(1−ρ)
(12)

where

ρ ≡ θ(η − 1) < 1 (13)

aj ≡
[
(λρ

j − 1)/(λj − 1)
]1/(1−ρ)

(14)

Rt+1 ≡ ∆t/∆t+1. (15)
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Hence firm j’s optimal policy is:

kj,t+1 =


λj(1− δ)kj,t if (1− δ)kj,t ≤ k∗j,t+1,

(1− δ)kj,t if k∗j,t+1 < (1− δ)kj,t ≤ λjk
∗
j,t+1,

(1− δ)kj,t/λj if (1− δ)kj,t > λjk
∗
j,t+1.

(16)

This completes the description of firm’s optimal behavior.

2.2 Aggregation of firms’ behaviors

By aggregating the goods supply function (8) across j, we obtain:

wt = awAtK
θ
t (17)

where Kt ≡
∑N

j=1(k
ρ
j,t/N)1/ρ. Equation (17) determines the equilibrium wage at the

marginal product of labor given the aggregate capital level. The supply function for

good j reduces to yj,t = (kj,t/Kt)θYt. Aggregating this supply function, we observe

that the aggregate supply is indeterminate within the firms’ sector. This is because

the within-period production is linear in labor. The equilibrium level of aggregate

production is thus determined by consumption and investment demands.

Plugging into (12), we obtain the optimal threshold rule for firm j as follows:

k∗j,t+1 = aj

(
(1/η)K−ρ

t+1(Rt+1 − 1 + δ)−1Yt+1

)1/(1−ρ)
. (18)

The aggregate labor demand function is obtained by summing the individual de-

mand functions (9) across firms. Using the equilibrium relation (17), we obtain:

Ht ≡
N∑

j=1

hj,t/N = h +
(

1− 1
η

)
Yt

wt
. (19)
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Define a firm’s state variable in the inaction region as:

sj,t ≡
log kj,t − log k∗j,t

log λj
. (20)

Under the (S,s) rule (16), sj,t takes values in the unit interval. Let zj,t denote the

threshold of sj,t below which the optimal action is to increase capital in the next period

t + 1. That is, if we start from sj,t = zj,t, then sj,t+1 = 0 holds for kj,t+1 = (1− δ)kj,t.

Thus,

0 = sj,t+1 = (log kj,t+1 − log k∗j,t+1)/ log λj (21)

= (log(1− δ) + log kj,t − log k∗j,t+1)/ log λj (22)

= zj,t + (log(1− δ)− log k∗j,t+1 + log k∗j,t)/ log λj . (23)

Then,

zj,t =
1
qj

+
log k∗j,t+1 − log γ − log k∗j,t

log λj
(24)

where

qj ≡
log λj

log γ + | log(1− δ)|
(25)

is the natural frequency of capital adjustments for firm j, where log γ is the trend

growth rate of output and capital.

No firms adjust capital downward (other than depreciation) when the economy

is around the stationary level, if the lumpiness log λj is sufficiently larger than the

depreciation | log(1− δ)|. Then, the law of motion for aggregate capital is written as:

Kt+1 =

 ∑
{j:sj,t>zj,t}

((1− δ)kj,t)ρ +
∑

{j:sj,t≤zj,t}

(λj(1− δ)kj,t)ρ

 /N

1/ρ

. (26)
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Thus,

Kρ
t+1 = (1− δ)ρ

 N∑
j=1

kρ
j,t +

∑
{j:sj,t≤zj,t}

(λρ
j − 1)kρ

j,t

 /N (27)

= (1− δ)ρ

Kρ
t +

∑
{j:sj,t≤zj,t}

(λρ
j − 1)kρ

j,t/N

 . (28)

Similarly, the aggregate investment is expressed as follows:

Xt =
N∑

j=1

xj,t/N = (1− δ)
∑

{j:sj,t≤zj,t}

(λj − 1)kj,t/N. (29)

2.3 Households

We assume that there are rational households and rule-of-thumb households. (1 − χ)

fraction of households follow a rule-of-thumb on their consumption and labor decision.

Their labor supply is set equal to the average in the economy. Namely, the rule-of-

thumb household’s labor supply follows HROT,t = Ht. They also consume all the wage

income less tax payment, and do not hold any asset. Hence CROT,t = wtHROT,t − Tt

where Tt is the lump-sum tax payment. The other, χ fraction of households are rational,

forward-looking decision makers, and they own the firms. The rational households have

a momentary utility log CR,t−HR,t and a flow budget constraint CR,t = wtHR,t+Πt/χ−

Tt, where Πt is the profit from firms. Thus the first order condition for contemporaneous

consumption yields:

CR,t = wt. (30)

The rational households discount the future utility by β. In each period t, the

rational households instruct firms about their marginal rate of intertemporal sub-

stitution, which the firms use as a discount factor in maximizing their values. If

the rational households know the future states, then the discount factor would be
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Rt+1 = wt+1/(wtβ) = (At+1/At)(Kt+1/Kt)θ. We assume that the rational households

know the realization of the future aggregate productivity At+1, but that they do not

know the realization of the future aggregate capital Kt+1 in t. We consider the case

where households know the current aggregate capital Kt but do not have a precise

information on its configuration across firms, (kj,t). Then households are assumed

to form an expected aggregate capital Ke
t+1 by approximating (kj,t) by its stationary

counterpart, as we formulate in detail shortly. Thus the discount factor instructed by

the rational households follows:

Rt+1 =
we

t+1

βwt
=

At+1

βAt

(
Ke

t+1

Kt

)θ

. (31)

The aggregation relation Ct = (1−χ)CROT,t+χCR,t must hold. Combining with the

aggregate labor demand (19) and (30), we obtain the aggregate consumption demand

as a function of wage and income:

Ct = bwwt + (1− ay)Yt − (1− χ)Tt (32)

where

bw ≡ χ + (1− χ)h (33)

ay ≡ 1− (1− χ)(1− 1/η). (34)

Finally, there is a government who collects lump-sum tax Tt and spends the proceed

on purchase of goods Gt. The government’s budget is always balanced: Gt = Tt for

all t. We also assume that the government purchase Gt grows constantly at the same

rate as the trend growth of Yt. Thus, the detrended government purchase is a constant

fraction τ of the steady-state level of the detrended output (Ȳ as we define shortly).
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2.4 Equilibrium

The goods and labor markets must clear at equilibrium. Hence,

Yt = Ct + Xt + Gt (35)

Ht = (1− χ)HROT,t + χHR,t (36)

where Xt ≡
∑N

j=1 xj,t/N is the aggregate investment. HR,t = Ht immediately follows

(36). Combining the market clearing conditions (35) and the consumption function

(32), we obtain:

ayYt = bwwt + Xt + χGt. (37)

Consumption CR,t and CROT,t are Dixit-Stiglitz composite goods: CR,t = (
∑N

i=1 c
(η−1)/η
R,i,t /N)η/(η−1)

and CROT,t = (
∑N

i=1 c
(η−1)/η
ROT,i,t /N)η/(η−1). We assume that the rule-of-thumb households

do minimize cost when they purchase cROT,i,t, just like the rational households do.

Then the derived demand for cR,i,t, cROT,i,t, and xj,i,t are solved given CR,t, CROT,t,

and xj,t. By the usual procedure with Dixit-Stiglitz indices, the market clearing condi-

tions for individual goods aggregate up to the market clearing condition for composite

goods (35). Then, the aggregation of derived demand xi,j,t, (cR,j,t, cROT,j,t) across i’s

and households yields the demand function for individual good j, as we supposed in

(3).

A perfect foresight equilibrium is the price system (pj,t, wt, Rt) and allocation

(Ct, CR,t, CROT,t, cR,i,t, cROT,i,t,Ht,HR,t,HROT,t, hj,t,Kt+1, kj,t+1, Xt, xj,t, xj,i,t, Yt, yj,t, uj,t)

such that the allocation solves the firm’s optimization problem and the rational house-

hold’s problem under the prices and that the allocation satisfies the rules of the gov-

ernment and the rule-of-thumb households and clears the goods and labor markets.

Summarizing the conditions derived above, the perfect foresight equilibrium path is
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determined by the following system of equations:

wt = awAtK
θ
t (38)

Rt+1 =
At+1

βAt

(
Ke

t+1

Kt

)θ

(39)

Ke
t+1 = Kt+1 (40)

ayYt = bwwt + Xt + χGt (41)

Kρ
t+1 = (1− δ)ρ

Kρ
t +

∑
{j:sj,t≤zj,t}

(λρ
j − 1)kρ

j,t/N

 (42)

Xt = (1− δ)
∑

{j:sj,t<zj,t}

(λj − 1)kj,t/N (43)

sj,t =
log kj,t − log k∗j,t

log λj
(44)

zj,t =
1
qj

+
log k∗j,t+1 − log k∗j,t

log λj
(45)

k∗j,t = aj

(
(1/η)K−ρ

t (Rt − 1 + δ)−1Yt

)1/(1−ρ)
(46)

2.5 Approximation of the future equilibrium path

Xt is very sensitive on detailed configurations of the capital profile kt, as we argue

in Section 4. Due to the lumpiness of investments, the capital dynamics follows a

high-dimensional non-linear system which leads to a chaotic path of the aggregate cap-

ital. Therefore, it is practically impossible for agents to compute the perfect foresight

equilibrium path without employing some approximations to forecast the future equi-

librium path. We assume that the agents approximate the cross-section distribution

of sj,t by a uniform distribution of a continuum of firms over the unit interval. It

turns out that this is a very good approximation of the actual distribution of sj,t. In

fact, it has been emphasized in the literature that a general one-sided (S,s) economy
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has a robust tendency in which sj,t converges to the uniform distribution (Caplin and

Spulber (1987), Caballero and Engel (1991)).

By replacing (sj,t) with a continuum of uniformly distributed random variables,

(28) is modified as follows.

Kρ
t+1 = (1− δ)ρ

Kρ
t +

∑
{j:sj,t≤zj,t}

(λρ
j − 1)kρ

j,t/N

 (47)

= (1− δ)ρ

 N∑
j=1

λ
sj,tρ
j k∗ρj,t +

∑
{j:sj,t≤zj,t}

(λρ
j − 1)λsj,tρ

j k∗ρj,t

 /N (48)

≈ (1− δ)ρE

(∫ 1

0
λ

sj,tρ
j k∗ρj,tdsj,t +

∫ zj,t

0
(λρ

j − 1)λsj,tρ
j k∗ρj,tdsj,t

)
(49)

= (1− δ)ρE

((
λρ

j − 1
ρ log λj

+ (λρ
j − 1)

λ
zj,tρ
j − 1
ρ log λj

)
k∗ρj,t

)
(50)

= (1− δ)ρE

(
λρ

j − 1
ρ log λj

λ
zj,tρ
j k∗ρj,t

)
(51)

= (1− δ)ρE

(
λρ

j − 1
ρ log λj

λ
ρ/qj

j (k∗j,t+1/k∗j,t)
ρk∗ρj,t

)
(52)

= E

(
λρ

j − 1
ρ log λj

aρ
j

)(
(1/η)K−ρ

t+1(Rt+1 − 1 + δ)−1Yt+1

)ρ/(1−ρ)
(53)

where the expectation is taken across heterogenous λj and aj . In the manipulation,

we used the facts that λ
zj,t

j = λ
1/qj

j k∗j,t+1/k∗j,t and λ
1/qj

j = (1− δ)−1. Then we get:

Kt+1 ≈ (a1−ρ/η)(Rt+1 − 1 + δ)−1Yt+1 (54)

where

a ≡ E

(
λρ

j − 1
ρ log λj

aρ
j

)1/ρ

. (55)

Similarly, (29) is rewritten as follows under the continuum of uniformly distributed
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sj,t:

Xt = (1− δ)
∑

{j:sj,t<zj,t}

(λj − 1)kj,t/N (56)

= (1− δ)
∑

{j:sj,t<zj,t}

(λj − 1)λsj,t

j k∗j,t/N (57)

= (1− δ)E
(∫ zj,t

0
(λj − 1)λsj,t

j dsj,tk
∗
j,t

)
(58)

= (1− δ)E

(
(λj − 1)

λ
zj,t

j − 1
log λj

k∗j,t

)
(59)

= (1− δ)E
(

λj − 1
log λj

(
λ

1/qj

j k∗j,t+1/k∗j,t − 1
)

k∗j,t

)
(60)

= (1− δ)E
(

λj − 1
log λj

(
(1− δ)−1k∗j,t+1 − k∗j,t

))
(61)

= E

(
λj − 1
log λj

(
k∗j,t+1 − (1− δ)k∗j,t

))
(62)

= E

(
λj − 1
log λj

aj

a
(Kt+1 − (1− δ)Kt)

)
. (63)

Thus,

Xt ≈ cX(Kt+1 − (1− δ)Kt) (64)

where,

cX ≡ E

(
λj − 1
log λj

aj

a

)
. (65)

The approximated dynamics under the continuum approximation is summarized as

follows:

Kt+1 =
a1−ρ

η

(
wt+1

βwt
− 1 + δ

)−1

Yt+1 (66)

wt = awAtK
θ
t (67)

ayYt = bwwt + cX(Kt+1 − (1− δ)Kt) + χGt. (68)
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The system boils down to a second-order difference equation in Kt:(
At+1

βAt

(
Kt+1

Kt

)θ

− 1 + δ

)
Kt+1 =

a1−ρ

ηay

(
bwawAt+1K

θ
t+1 + cX(Kt+2 − (1− δ)Kt+1) + χGt+1

)
.

(69)

The aggregate productivity has a constant growth rate log γA. Thus, the output

has a time trend log γ ≡ log γA/(1 − θ). We normalize variables by the growth factor

and denote them by a hat. Namely, K̂t ≡ Kt/A
1/(1−θ)
t , ŵt ≡ wt/A

1/(1−θ)
t , etc. Denote

the steady state values of the detrended variables by an upper bar.

The dynamics (69) is then rewritten as:

γ

β

(
K̂t+1

K̂t

)θ

− 1 + δ

 K̂t+1 =
a1−ρ

ηay

(
bwawK̂θ

t+1 + cX(γK̂t+2 − (1− δ)K̂t+1) + χτȲ
)

(70)

We further assume that agents form their expectations by log-linearly approximat-

ing the dynamics (70). We denote the deviation of the log detrended variables from the

steady state values by a tilde, such as K̃t = log K̂t − log K̄. By a first-order log-linear

approximation, (70) becomes:

R̄θ(K̃t+1 − K̃t)
R̄− 1 + δ

+
(
R̄− 1 + δ

)
K̃t+1 =

a1−ρ

ηay

(
bw

( w̄

K̄

)
θK̃t+1 + cX

(
γK̃t+2 − (1− δ)K̃t+1

))
(71)

Rearranging, we obtain:

 K̃ ′′

K̃ ′

 =

 ( ηay

a1−ρcXγ

)(
R̄θ

R̄−1+δ
+ R̄− 1 + δ

)
−
(

bwθ
cXγ

w̄
K̄
− 1−δ

γ

)
− R̄θηay

(R̄−1+δ)a1−ρcXγ

1 0

 K̃ ′

K̃


(72)

Numerical computations show that the coefficient matrix has one eigenvalue greater

than 1 and the other less than 1 for the parameter sets we consider. Thus the dynamics

is determinate. We pick the smaller root ηK < 1 to form the log-linearized expected
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dynamics K̃ ′ = ηKK̃.

The approximated equilibrium path solves the system (38–46) where the perfect

foresight condition (40) is replaced with the approximated forecast K̃e
t+1 = ηKK̃t. The

forecasted capital sequence (K̃t, K̃
e
t+1) determines the prices wt and Rt+1, and then

the rest of the system is solved.

Due to the high-dimensional nonlinearity of the capital profile dynamics, there may

be multiple profiles of (kj,t+1) that solve the system given the profile (kj,t). We thus

need to specify an equilibrium selection algorithm. We select an equilibrium path

that is the closest to the equilibrium path in the economy with a continuum of firms.

Namely, we select K̃t+1 that is the closest to the expected aggregate capital ηKK̃t

among all the K̃t+1’s that solve the equation system given (kj,t).

This selection ensures that our estimate of the magnitude of endogenous fluctu-

ations is most conservative, since we choose the least volatile equilibrium path. In

particular, this selection excludes the fluctuations that arise from some informational

coordination among firms. The selected equilibrium can be reached by a fictitious best

response dynamics in which firms only need to know the aggregate capital to make

their decisions. Thus, the informational requirement for firms’ decisions is quite par-

simonious. We argue, along with Cooper (1994), that such parsimony is a desirable

property for an equilibrium selection algorithm to have in macroeconomic analysis, be-

cause it would cost a lot for firms to collect precise information on the capital profile,

and because it would require an extensive communication for the many, heterogeneous

firms to coordinate their expectations.
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3 Numerical Results

3.1 Calibration

We use steady-state values to calibrate fundamental parameters. Those “great ratios”

are obtained as follows. From (66), we obtain a steady-state output-capital ratio as:

aY K ≡ Ȳ

K̄
= ηaρ−1

(
γ

β
− 1 + δ

)
. (73)

The dynamics (70) has a steady state:

K̄ =
(

bwaw

(ay − χτ)aY K − cX(γ − 1 + δ)

)1/(1−θ)

. (74)

The steady state wage is given by w̄ = awK̄θ. Then,

w̄

K̄
=

(ay − χτ)aY K − cX(γ − 1 + δ)
bw

. (75)

By using (73) and the relation X̄/K̄ = cX(γ − 1 + δ) from (64), we obtain:

aXY ≡ X̄

Ȳ
=

a1−ρcX(γ − 1 + δ)
η(γ/β − 1 + δ)

. (76)

Using the steady-steate relation of (19), we obtain the steady-state share of labor

income:

w̄H̄/Ȳ = 1− 1/η + hw̄/Ȳ (77)

= 1− 1/η + h
(ay − χτ)aY K − cX(γ − 1 + δ)

bwηaρ−1(γ/β − 1 + δ)
. (78)

To calibrate β, we use the steady-state real interest rate R̄ = γ/β from (31). R̄ is

set at 1.6% and the trend growth rate γ is set at 0.37% quarterly.
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We match the consumption-output ratio and the investment-output ratio by cali-

brating θ. We set C̄/Ȳ = 0.59 and X̄/Ȳ = 0.18. In the benchmark model (Specifica-

tions I and II below), we abstract from the government sector, and thus we set τ = 0

and aXY to be X̄/(C̄ + X̄) = 0.18/(0.59 + 0.18). The government is incorporated in

Specifications III and IV, where we set τ = 1− 0.59− 0.18 = 0.23.

Labor income share is set at 0.58 and matched by calibrating h. Since aggregate

profits (dividend payments to households) satisfy Πt = Ct − wtHt, the profit share of

output is equal to the consumption share less labor income share. Under the calibration

C̄/Ȳ = 0.59 and w̄H̄/Ȳ = 0.58, the profit share is 1%.

The cross-section distribution of the lumpiness parameter λi is matched with the

empirical observations reported in Cooper, Haltiwanger, and Power (1999). The dis-

tribution shape is fitted well by an exponential distribution. Following Cooper et al.,

we regard λi = 1.2 as the characteristic size of lumpiness. Thus we set the mean of the

distribution at 1.2, its standard deviation at 0.1, and its lower bound at 1.1. N is set

at 350000, which is the number of manufacturing establishments in the US (Cooper,

Haltiwanger, and Power (1999)). The capital depreciation rate is set at the standard

0.025 quarterly. The fraction of rational households, χ, is set at 50% in Specifications

I and III, and at 10% in II and IV. The parameter for the elasticity of substitution η

is freely chosen to adjust the variance of aggregate investment. We set η = 1.57 for I

and II and η = 1.38 for III and IV.

3.2 Simulations

The equilibrium path is simulated for 300 quarters and the first 100 quarters are

discarded. The equilibrium path is detrended by the Hodrick-Prescott filter at the

smoothing parameter 1600, and then equilibrium moments are computed. Each run

is repeated for 30 times to obtain average and standard deviation of the equilibrium
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w̄H̄/Ȳ R̄− 1 γ β δ mean λ std λ
0.58 0.016 1.0037 0.9878 0.025 1.2 0.1

Table 1: Calibrated moments

χ τ η aXY θ h
I 0.5 0 1.57 0.2338 0.9225 0.2278
II 0.1 0 1.57 0.2338 0.9225 0.0888
III 0.5 0.23 1.38 0.18 0.9365 0.3670
IV 0.1 0.23 1.38 0.18 0.9365 0.1108

Table 2: Parameter values

moments.

Table 3 summarizes the moment properties of the equilibrium paths. We observe

that endogenous fluctuations of investment, consumption, output, and capacity uti-

lization (hours) occur. The standard deviation of output relative to investment also

roughly matches with the empirical counterpart. Consumption and investment are

strongly procyclical. By comparing across different specifications, we observe that a

larger fraction of rule-of-thumb households (smaller χ) leads to a larger standard devi-

ation of output, and an increase in η reduces the fluctuation magnitudes. Fluctuations

of capital and wage are as small as those in the business cycles, while the magnitude

of consumption fluctuations is considerably smaller than data. We observe that the

model generates no autocorrelations.

4 Mechanism of endogenous fluctuations

In this section, we analytically characterize the mechanism of the endogenous fluctu-

ations we observed in the numerical simulations. The analysis here is similar to the

formal analysis of different models presented in separate papers (Nirei (2006), Nirei
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Ŷ Ĉ X̂ Ĥ K̂ Ŵ
I (τ = 0, η = 1.57, χ = 0.5)

Std. dev. 0.0107 0.0023 0.0386 0.0070 0.0011 0.0010
(se) (0.0005) (0.0001) (0.0018) (0.0003) (0.0001) (0.0001)

Corr. with Ŷ 1 0.9534 0.9981 0.9967 -0.4390 -0.4390
(se) (0.0055) (0.0003) (0.0004) (0.0328) (0.0328)

Autocorr. -0.0617 0.0385 -0.0664 -0.0667 0.4727 0.4727
(se) (0.0717) (0.0722) (0.0716) (0.0715) (0.0508) (0.0508)

II (τ = 0, η = 1.57, χ = 0.1)
Std. dev. 0.0147 0.0060 0.0433 0.0095 0.0012 0.0011

(se) (0.0007) (0.0003) (0.0022) (0.0005) (0.0001) (0.0001)

Corr. with Ŷ 1 0.9955 0.9989 0.9979 -0.4640 -0.4640
(se) (0.0008) (0.0002) (0.0004) (0.0389) (0.0389)

Autocorr. -0.0866 -0.0706 -0.0898 -0.0897 0.4556 0.4556
(se) (0.0722) (0.0736) (0.0721) (0.0719) (0.0676) (0.0676)

III (τ = 0.23, η = 1.38, χ = 0.5)
Std. dev. 0.0034 0.0007 0.0169 0.0017 0.0005 0.0005

(se) (0.0002) (0.0000) (0.0008) (0.0001) (0.0000) (0.0000)

Corr. with Ŷ 1 0.8410 0.9971 0.9936 -0.4259 -0.4259
(se) (0.0105) (0.0003) (0.0006) (0.0246) (0.0246)

Autocorr. -0.0693 0.2109 -0.0757 -0.0762 0.4750 0.4750
(se) (0.0589) (0.0510) (0.0592) (0.0593) (0.0396) (0.0396)

IV (τ = 0.23, η = 1.38, χ = 0.1)
Std. dev. 0.0090 0.0035 0.0389 0.0045 0.0011 0.0010

(se) (0.0005) (0.0002) (0.0024) (0.0003) (0.0001) (0.0001)

Corr. with Ŷ 1 0.9686 0.9971 0.9952 -0.4339 -0.4339
(se) (0.0041) (0.0004) (0.0007) (0.0367) (0.0367)

Autocorr. -0.0782 0.0010 -0.0850 -0.0851 0.4599 0.4599
(se) (0.0805) (0.0824) (0.0804) (0.0803) (0.0602) (0.0602)

Table 3: Simulated moments
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(2008)). To facilitate the analysis, we introduce a fictitious tatonnement process that

starts from the capital profile (kj,t) and results in (kj,t+1) as follows.

1. Initialize step v = 0 and kj,t+1,0 = kj,t.

2. Given K̂t, firms predict the next period aggregate capital Kt+1,0 as K̂t+1,0 =

ηKK̂t.

3. Form the adjustment threshold based on the predicted aggregate capital: k∗j,t+1,v =

(aj/a)Kt+1,v.

4. Adjust capital according to the threshold rule:

kj,t+1,v+1 =


λj(1− δ)kj,t+1,v if (1− δ)kj,t+1,v ≤ k∗j,t+1,v,

(1− δ)kj,t+1,v if k∗j,t+1,v < (1− δ)kj,t+1,v ≤ λjk
∗
j,t+1,v,

(1− δ)kj,t+1,v/λj if (1− δ)kj,t+1,v > λjk
∗
j,t+1,v.

(79)

5. Stop the procedure if v > 0 and if there were no firms that adjusted capital

in 4. Equilibrium outcome is Kt+1 = Kt+1,v and kj,t+1 = kj,t+1,v. Other-

wise, set the step forward to v + 1, update aggregate capital as Kt+1,v+1 =

(
∑N

j=1 kρ
j,t+1,v+1/N)1/ρ, and repeat from 3.

We can show that the converged capital profile of the tatonnement process above

coincides with an equilibrium profile which is selected by an alternative equilibrium se-

lection mechanism. The alternative equilibrium selection chooses K̃t+1 closest to ηKK̃t

such that sign(K̂t+1−ηKK̂t) = sign(K̂t+1,0−ηKK̂t). That is, it selects the equilibrium

capital closest to the expected capital in the direction of the initial expectation error.

The fluctuation observed under the alternative equilibrium selection is similar to

that observed previously. Table 4 shows the simulated moments under the alternative

equilibrium selection. We observe that the fluctuations are larger than the previous

simulations, naturally. Other than that, the fluctuation pattern is quite similar to the
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previous one. The alternative selection is closely connected to the original selection,

as the equilibrium selected in the previous section can be achieved by running the new

selection algorithm for the both directions below and above ηKK̃t. In what follows,

we utilize the alternative equilibrium selection in order to characterize the endogenous

fluctuations analytically.

The total capital growth in a period is determined by two components in the fic-

titious tatonnement process: the initial adjustments caused by the initially expected

growth log Ke
t+1 − log Kt, and the successive adjustments caused by the initial re-

sponses. In the initial step, capitals are depreciated by δ, firms form expectations for

the aggregate capital next period Ke
t+1, and a fraction of them decide to undertake

lumpy investments. The actual aggregate capital after the initial investment would be

equal to the expected capital if there were a continuum of firms distributed uniformly

over the inaction band. Since there are only a finite number of firms, however, there

will be a slight difference between the actual and the expected. The gap will be filled

by the successive adjustments in the tatonnement.

We characterize the initial and successive contributions separately and then assess

the total impact. First, we analytically characterize the number of firms that invest

in the initial step, which we call m1. To facilitate the characterization, we regard the

actual configuration of firms’ positions in the inaction band as N random draws from

the uniform distribution over the inaction band. Firm i then invests with probability

1/qi at the stationary level of capital K̂t = K̄. Then m1 follows the summation of the

Bernoulli trials with probability 1/qi over i. The variance of m1 is
∑N

i=1(1− 1/qi)/qi,

and the variance of m1/N decreases linearly in N .

The size of fluctuation of the successive adjustments is determined by the sensitivity

of k∗, the lower bound of the inaction band, to the aggregate capital K. From (18), we

see that there are two channels of the response: K−ρ and Y . The first is the price effect:

an increase in capital raises the real wage and thus reduces the labor demand and the
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Ŷ Ĉ X̂ Ĥ K̂ Ŵ
I (τ = 0, η = 1.57, χ = 0.5)

Std. dev. 0.0120 0.0026 0.0433 0.0079 0.0013 0.0012
(se) (0.0006) (0.0001) (0.0021) (0.0004) (0.0001) (0.0001)

Corr. with Ŷ 1 0.9518 0.9980 0.9966 -0.4530 -0.4530
(se) (0.0047) (0.0002) (0.0004) (0.0293) (0.0293)

Autocorr. -0.0167 0.0756 -0.0216 -0.0203 0.4792 0.4792
(se) (0.0633) (0.0638) (0.0629) (0.0631) (0.0468) (0.0468)

II (τ = 0, η = 1.57, χ = 0.1)
Std. dev. 0.0150 0.0061 0.0443 0.0097 0.0013 0.0012

(se) (0.0009) (0.0004) (0.0026) (0.0006) (0.0001) (0.0001)

Corr. with Ŷ 1 0.9948 0.9986 0.9976 -0.4209 -0.4209
(se) (0.0007) (0.0002) (0.0003) (0.0366) (0.0366)

Autocorr. -0.1052 -0.0833 -0.1106 -0.1102 0.5062 0.5062
(se) (0.0795) (0.0805) (0.0792) (0.0793) (0.0604) (0.0604)

III (τ = 0.23, η = 1.38, χ = 0.5)
Std. dev. 0.0034 0.0007 0.0170 0.0017 0.0005 0.0005

(se) (0.0002) (0.0000) (0.0011) (0.0001) (0.0000) (0.0000)

Corr. with Ŷ 1 0.8366 0.9970 0.9935 -0.4267 -0.4267
(se) (0.0161) (0.0004) (0.0009) (0.0328) (0.0328)

Autocorr. -0.0106 0.2394 -0.0147 -0.0153 0.4841 0.4841
(se) (0.0665) (0.0715) (0.0664) (0.0663) (0.0546) (0.0546)

IV (τ = 0.23, η = 1.38, χ = 0.1)
Std. dev. 0.0082 0.0031 0.0357 0.0041 0.0009 0.0008

(se) (0.0004) (0.0002) (0.0019) (0.0002) (0.0001) (0.0001)

Corr. with Ŷ 1 0.9775 0.9981 0.9967 -0.5267 -0.5267
(se) (0.0037) (0.0004) (0.0006) (0.0342) (0.0342)

Autocorr. -0.2284 -0.1695 -0.2326 -0.2323 0.3026 0.3026
(se) (0.0615) (0.0645) (0.0615) (0.0611) (0.0531) (0.0531)

Table 4: Simulated moments under the alternative equilibrium selection
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optimal supply. The second is the income effect: an increase in aggregate demand

increases the optimal goods supply. Note that another channel from real interest rate

is shut off by the assumption of the predetermined interest: the discount rate applied

by firms has to be decided before the firms decide investments. By log-linearizing the

aggregate demand function ayYt = bwawAtK
θ
t + Xt + Gt and combining with (64), we

obtain:

ηKY ≡ d log Yt

d log Kt
=

1
ay

(
bwθ

w̄

Ȳ
+ cX(γηK − 1 + δ)

K̄

Ȳ

)
(80)

where the first term represents the effect through an increase in wage and the second

term shows the effect through future investment.

Then, ηKk ≡ d log k∗t /d log Kt = (ηKY − ρ)/(1 − ρ). Thus, the probability that

firm i is induced to invest by a one-percent increase in aggregate capital is ηKk/ log λi.

Also, an increase of log Kt by j’s investment is approximately equal to log λj/N when

N is large. In a situation where the heterogeneity in λj is negligible, then, the number

of firms that are induced to invest by a single firm’s investment follows a binomial

distribution with probability parameter ηKk/N and population N . Thus, the alter-

native equilibrium selection algorithm can be embedded in a branching process with

the binomial. Namely, the number of firms who invest in step u + 1 is the binomial

distribution convoluted by the number of firms who invest in u. The branching process

will stop in a finite step with probability 1 if the mean of the binomial is less than or

equal to 1 (see Feller (1957)). Thus, for the equilibrium selection to be valid, we need

0 < ηKk ≤ 1.

Suppose that 0 < ηKk ≤ 1 is satisfied, and take N to infinity. Then, the equilibrium

selection algorithm asymptotically follows a Poisson branching process: the number of

firms induced to invest by a single firm in each step follows a Poisson distribution with

mean ηKk. Let W denote the total number of firms that are induced to invest in the en-

tire process that starts from one firm. Let F denote the probability generating function
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of W , and G denote the probability generating function of the Poisson distribution.

Then, for the branching process, a recursive relation F (s) = sG(F (s)) holds. Thus,

E(W ) = F ′(1) = 1/(1− ηKk) and E(W (W − 1)) = F ′′(1) = ηKk(2− ηKk)/(1− ηKk)3.

The total number of investing firms is m1 plus m1-convolution of W which we write as

W ∗m1 . We obtain:

V (m1 + W ∗m1) = E(V (m1 + W ∗m1 | m1)) + V (E(m1 + W ∗m1 | m1)) (81)

= E(|m1|)V (W ) + (1 + E(W ))2V (m1) (82)

=
√

2V (m1)/πηKk/(1− ηKk)3 + ((2− ηKk)/(1− ηKk))2V (m1) (83)

Suppose that the lumpiness λj is homogenous across firms. Then V (m1) = N(1−

1/q)/q. A normalized capital growth rate, N(K̂t+1 − K̂t), is asymptotically equal to

the lumpiness log λ multiplied by the fraction of firms that invest. Then the variance

of the growth rate V (K̂t+1 − K̂t) becomes:

(log λ)2
(√

2(1− 1/q)/qπηKk/(1− ηKk)3N1.5 + ((2− ηKk)/(1− ηKk))2(1− 1/q)/qN
)

(84)

As N tends to infinity, the second term dominates the first term. The second term

declines linearly in N , and thus the law of large number is holding: the aggregate

variance decreases linearly in N .1 When N is finite, however, the variance can be non-

negligible if ηKk is close to one, because the second term has a square of the inverse

of 1− ηKk and the first term has its cube. Thus, a considerable aggregate fluctuation

may arise for a large N if the strategic complementarity ηKk is close enough to one.

This result is an extension of the research started by Jovanovic (1987) who for-

mulates the idea that idiosyncratic shocks can generate aggregate shocks by a strong

1We can show that the law of large numbers does not hold if ηKk = 1. Namely, the variance of the
aggregate variables does not converge to zero as N tends to infinity. This case is investigated in a separate
paper Nirei (2008).
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multiplier effect. Our result differs from Jovanovic’s in that the multiplier effect is

not constant but depends sensitively on the detailed configuration the capital profile.

Thus, the aggregate fluctuations occur endogenously in our model, while Jovanovic’s

model does not generate fluctuations if there were no exogenous shocks. Our result is

closely connected to Durlauf (1993) who emphasized the effects of detailed states in

high-dimensional nonlinear dynamics.

Note that in (84) the lumpiness log λ affects the standard deviation of the aggregate

growth rate almost linearly (log λ also affects q but its effect is quantitatively negli-

gible). The aggregate fluctuation is further enhanced by the dispersion of λj when

λj is heterogeneous. In that case, the recursive relation of the generating function

F (s) = sG(F (s)) is reinterpreted as G being a generating function of a compound

Poisson distribution. The computation of the variance is possible but tedious (Nirei

(2003)).

Lumpiness is quantitatively important to generate the aggregate fluctuations. We

note that the magnitude of the micro-level fluctuation caused by the lumpiness is

independent of time scale, whereas idiosyncratic quarterly shocks in productivity will

be smaller than annual shocks. Thus, it is natural to guess that the lumpiness affects

the short-run fluctuations whereas the productivity shocks take over in the long run.

It is possible to incorporate the idiosyncratic productivity shocks in our model and

generate the aggregate fluctuations through the same propagation mechanism. Adding

the idiosyncratic shocks would generate even larger aggregate fluctuations, but the

lumpiness will continue to provide an important source of fluctuations in the short

run.

The endogenous fluctuation of capital affects output through investment demand.

Let σ(gK) =
√

V (K̂t+1 − K̂t) denote the standard deviation of the capital growth

fluctuation. In the benchmark specification I, the analytic approximation above gives

σ(gK) = 0.0013. This could generate a large enough fluctuation of investment and
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output, because Y and X are substantially smaller than K in quarterly basis. Note

that X̂ ' (X−X̄)/X̄ = (gKK+δ(K−K̄))/δK̄. Around the steady state K = K̄, σ(X̂)

is roughly about σ(gK)/δ, which is equal to 0.052 under the calibrated parameters. This

generates the fluctuation of output σ(Ŷ ) to be about 0.052X̄/Ȳ = 0.012, provided that

the consumption is fixed. If the consumption comoves with the investment demand,

then the output fluctuation will be even larger.

Given the autonomous investment fluctuations, the relative size of fluctuations of

Y and C are determined from the relations: ayYt = bwwt + Xt + Gt and Ct = bwwt +

(1 − ay)Yt − (1 − χ)Tt. In terms of log-deviation, we have: ayỸt = bw(w̄/Ȳ )w̃t +

(X̄/Ȳ )X̃t. Note that the fluctuation of wage solely arises from capital movements.

Thus, wage and investment have little correlation around the stationary-level capital.

If we neglect the correlation term, then we have V (Ỹ )/V (X̃) approximately equal to

(bwawY /ay)2V (w̃)/V (X̃) + (aXY /ay)2, Also by aCY C̃t = bwawY w̃t + (1 − ay)Ỹt, we

can approximate V (C̃)/V (Ỹ ) by ((1−ay)/aCY )2 +(bwawY )2V (w̃)/V (Ỹ ). The relative

variances are observed roughly at V (Y )/V (X) = 1/9 and V (C)/V (Y ) = 0.6 in the

business cycles. These values can be matched if we set ay ≈ 0.5, which requires

η > 2 and to set χ accordingly. In our current calibration, however, we obtain small

fluctuations of investment when η is higher than 2. For the range of η that generates

considerable fluctuations, we obtain reasonable simulated results for V (Y )/V (X), but

a very small number for V (C)/V (Y ).

Simulations show that the model requires a high mark-up rate and a high capital

intensiveness in order to generate the large fluctuations. This is due to the fact that the

amplification mechanism relies heavily on the persistence of aggregate capital. When

the aggregate capital is persistent, an increase in investment this period raises the

investment in the next period, which increases the output in the next period and thus

strengthens the incentive to invest in this period. To achieve high ηK , a high value

of θ is required. In order to maintain the labor share under high θ, a high value
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of η is required. This problem might be alleviated by incorporating other effects of

investment on output. For example, investment may affect next period’s consumption

through increased employments. Such an extension is left for future research.

5 Conclusion

This paper presents a real dynamic general equilibrium model with monopolistic com-

petition, variable capacity utilization, and lumpy investments. The model does not

have any exogenous shocks, and yet it is able to generate the aggregate fluctuations

due to the non-linearity that arises from the lumpy investments. In this sense, this pa-

per provides a theory of endogenous fluctuations of the Solow residuals that are taken

exogenous in the standard literature.

Under the standard calibration of first moments of aggregate variables, the model

generates aggregate fluctuations of investment and output that are comparable in mag-

nitude to the fluctuations observed at the business cycles frequencies. The comovement

of output, investment, and consumption is also captured well. However, the magni-

tude of consumption fluctuation is smaller than its empirical counterpart. Also, the

model generates no autocorrelations. The calibration used is not quite comparable

with empirical observations on the mark-up rate and capital intensiveness. A possible

extension of the model is suggested to address these problems.
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